Entrada de blog

El abuelo y la niña

Enviado por jmd el 13 de Octubre de 2008 - 13:52.

 

El viernes 17 de octubre se realizará la II Olimpiada de Matemáticas de la Secundaria 4 en Cd. Victoria. A ese evento va dedicado este post.


La niña y su abuelo

Noticia

Reporte norestense

Enviado por jmd el 5 de Octubre de 2008 - 10:49.
La preselección de la OMM tamaulipeca, participó este viernes 3 de octubre en la VIII ONM, en Saltillo, Coahuila. Por puntaje total, quedamos en segundo lugar: NL, 193 puntos; Tam, 109; y Coah, 58. Por medallas también: 1 oro de Tam contra 3 de NL y 0 de Coah; 3 platas de Tam contra 5 de NL y 1 de Coah; 4 bronces de Tam contra 4 de Coah y 3 de NL.

En resumen, Tamaulipas quedó segundo. Quien haya seguido el desempeño de la preselección Tamaulipas de la XXII OMM tiene el suficiente contexto para decidir si ese segundo lugar debe celebrarse o bien lamentarse.

Noticia

Programa de actividades norestense

Enviado por jmd el 1 de Octubre de 2008 - 03:07.

VIII Olimpiada de Matemáticas del Noreste


Programa General


(Quinta Dorada)


Saltillo, Coahuila, octubre 2008.


Jueves 2 de octubre





Entrada de blog

El problema 2 del concurso irracional

Enviado por jmd el 30 de Septiembre de 2008 - 13:38.

Consideremos el siguiente problema apoyados en la figura: demostrar la concurrencia de la línea media MN, la bisectriz de B, y la cuerda PQ (P, Q son los puntos de tangencia del incírculo con los lados AB y AC).

Solución

Con la cuerda y la bisectriz cruzando en T, trazamos MT. Vamos a demostrar que MT es línea media.

Noticia

Siguiente entrenamiento, viernes 26, CBTis 103

Enviado por jmd el 24 de Septiembre de 2008 - 13:08.

Se aprovechará para participar en el



Entrada de blog

Consideraciones metacognitivas sobre Problem Solving

Enviado por jmd el 15 de Septiembre de 2008 - 22:21.

Consideremos las siguientes proposiciones:

Proposición 1: En cualquier conjunto de $n+1$ números naturales siempre hay dos cuya diferencia es múltiplo de $n$.

Proposición 2: Cualquier número natural $n$ tiene un múltiplo $kn$ formado únicamente por ceros y unos (en su representación usual del sistema decimal).

¿Qué relación hay entre estas dos afirmaciones? Lo primero que se nota es que ambas contienen la frase "múltiplo de $n$"

Recordemos que la primera afirmación se demuestra por el principio de pichoneras: hay dos con el mismo residuo al dividir entre n, por lo tanto...

Entrada de blog

Desordenamientos

Enviado por jmd el 13 de Septiembre de 2008 - 16:00.

Desordenamientos (derangement)

Dentro de las aplicaciones del principio de inclusión-exclusión está el conteo de permutaciones con posiciones restringidas. Un caso especial de éstas son los desordenamientos, en los cuales se impone la restricción de que ningún elemento esté en su lugar original.

Recordemos que una permutación sobre $n$ elementos es una biyección $f:\{1,2,...,n\}\rightarrow\{1,2,...,n\}$. Un desordenamiento en combinatoria es una permutación en la cual ningún elemento está en su lugar. Formalmente, un desordenamiento es una biyección $f$ de un conjunto finito $S$ en sí mismo sin puntos fijos (para toda $s$ de $S, f(s)$ es diferente de $s$).

Noticia

Entrenamiento el 19, en el CETis 109

Enviado por jmd el 13 de Septiembre de 2008 - 02:57.

El siguiente entrenamiento será en las instalaciones del CETis 109 los días 19, 20 y 21 de septiembre del año en curso. De la manera acostumbrada, el viernes 19 inicia a las 4pm y continua el sabado con el horario que acuerden con los entrenadores, etc. El entrenamiento estará a cargo de los jóvenes ex-olímpicos que el profesor Carlos Alcocer designe, y pues los temas sólo puedo sugerirlos: un tema básico que no se ha cubierto es el de combinatoria,...

Entrada de blog

Método del residuo chino para sistemas de congruencias

Enviado por jmd el 11 de Septiembre de 2008 - 02:25.

Una compañía de n soldados es tal que:
– n es un número capicúa. (Se lee igual al derecho y al revés. Ejemplo:15651, 9436349.)
– Si los soldados se forman de 3 en 3, quedan 2 soldados en la última fila; de 4 en 4, quedan 3 soldados en la última fila; de 5 en 5, quedan 5 soldados en la última fila.

Hallar el menor n que cumple las condiciones y demostrar que hay una infinidad de valores n que las satisfacen.

Solución

El problema se deja modelar con el sistema de congruencias siguiente:

$n=2(mod3)$
$n=3(mod4)$
$n=0(mod5)$

Entrada de blog

El cocinero chino: un problema diofantino

Enviado por jmd el 9 de Septiembre de 2008 - 17:36.

El enunciado del siguiente problema es clásico. El problema se denomina "el cocinero chino". Se usa para ilustrar el teorema chino del residuo.

Distribuir contenido