Didácticos

didacticos
Entrada de blog

Ecuación de la recta

Enviado por jmd el 16 de Enero de 2011 - 22:40.

Sean $l$ una recta cualquiera en el plano cartesiano y $A=(x_1,y_1)$ un punto sobre ella. Como la recta se define a través de su pendiente, se tiene que considerar el caso especial en que la pendiente no está definida por la división entre cero (caso de la recta vértical). Así pues:

Entrada de blog

Tres conceptos básicos de la geometría analítica

Enviado por jmd el 14 de Enero de 2011 - 19:26.

Este post introduce los conceptos más básicos de la geometría analítica: distancia entre dos puntos, pendiente de una recta y coordenadas del punto medio. Supone que el lector ya conoce las reglas de representación de puntos en el plano cartesiano de coordenadas.

Entrada de blog

Con trigonometría (a veces) la creatividad es innecesaria

Enviado por jmd el 29 de Diciembre de 2010 - 10:37.

 Hablando en general, la solución de un problema de geometría exige cierta creatividad. Ésta, con frecuencia, consiste en ver el problema de otra forma. Por ejemplo, ampliando el contexto mediante un trazo auxiliar.

Se trata del fenómeno del framing  el cual he abordado en otros posts en MaTeTaM. Framing se traduce como encuadre o enmarcamiento, como cuando se le pone el marco a una fotografía o pintura. Así pues, la creatividad, con frecuencia, consiste en poner al problema en un marco adecuado.

Entrada de blog

Problemas con trampa procedimental

Enviado por jmd el 17 de Noviembre de 2010 - 23:28.

 La pregunta clásica de Sócrates, que conduce al alumno a una falsa respuesta,  está orientada a que el interlocutor vea de bulto que su tesis es insostenible. Para Sócrates era rutina, pero...

Más allá del procedimiento

El diseño de problemas no rutinarios como una forma de que el aprendiz aprenda y/o refuerce el significado de ciertos conceptos matemáticos clave es una tarea que lleva tiempo. Pero, además, el diseñador debe conocer el principio general de diseño: el problema debe incluir una trampa procedimental, y ésta debe propiciar el asombro de quien caiga en ella al descubrir que algo está mal en su procedimiento.

Entrada de blog

Grafos --caminos, ciclos, conexidad

Enviado por jmd el 3 de Noviembre de 2010 - 21:41.

En este post voy a presentar otro grupo de conceptos de la teoría de grafos, ligados a la noción de camino --la metáfora obvia es un mapa de carreteras. El significado usual de camino es una vía, una ruta, por la que se transita para ir de un lugar geográfico a otro --quizá pasando por otros lugares. El significado es tan básico que su definición sale sobrando. En teoría de grafos

Entrada de blog

Grafos --incidencia, grado de un vértice, y un teorema de Euler

Enviado por jmd el 30 de Octubre de 2010 - 15:41.

 Como se sabe, un grafo $G$ consiste de vértices y aristas, donde éstas se pueden ver como pares de vértices. El conjunto de vértices suele denotarse con $V$ y el de aristas con $E$ --y el grafo con $G(V,E)$. Como ya se dijo en el post Modelación de Relaciones, la utilidad principal de los grafos es la modelación de relaciones.

Entrada de blog

Grafos --y la modelación de relaciones

Enviado por jmd el 25 de Octubre de 2010 - 19:01.

En este post la noción matemática de grafo es presentada a través de la metáfora de los poliedros y la relación de adyacencia entre sus vértices. Y ello para darle la vuelta a las definiciones formales, y ahorrarnos al menos cuatro definiciones: vértice, arista, la relación de adyacencia entre vértices, y la de incidencia entre vértices y aristas.

Entrada de blog

La dialéctica entre técnica y teoría

Enviado por jmd el 29 de Septiembre de 2010 - 22:28.

La dialéctica es un método de razonamiento que se basa en la contradicción: cada afirmación (tesis) tiene una antítesis que la contradice; y del enfrentamiento entre ambas surge una síntesis que elimina la contradicción (y la síntesis se convierte en la nueva tesis que encontrará su antítesis, etc.)

Entrada de blog

¿Es el aprendizaje del álgebra un problema resoluble con tecnología?

Enviado por jmd el 16 de Septiembre de 2010 - 22:45.

La computadora, se ha dicho, es una solución en busca de problemas. Y en la enseñanza de las matemáticas se postuló, desde la aparición de esa herramienta maravillosa, que la PC (y, antes de ella, las calculadoras) podría ser la solución a las dificultades que los estudiantes enfrentan al aprender esa "ciencia incomprensible" (la etiqueta es espuria, pero de aceptación universal) denominada álgebra .

Entrada de blog

Sobre el principio de no contradicción

Enviado por jmd el 21 de Agosto de 2010 - 09:12.

El año pasado, al iniciar los entrenamientos de la preselección Tamaulipas para la Olimpiada Mexicana de Matemáticas, les presenté a los preseleccionados el "teorema" clásico de que todos los triángulos son isósceles (Ver mi post Lapsus de razonamiento para una "demostración" ).

Después de presentar la figura a mano alzada en el pizarrón (de hecho, la figura es la fuente de toda la confusión) Luis Brandon pasó al frente y realizó la "demostración" (pues ya la conocía y sabía que estaba trucada).

Distribuir contenido