Avanzado

Problemas de nivel nacional.
Problema

6.- Punto ideal de semejanza

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 13:57.

Encuentra todos los $n \geq 3$, tales que existe un polígon convexo de $n$ lados $A_1A_2 \dots A_n$, que tenga las siguientes características:

  • todos los ángulos internos de $A_1A_2 \dots A_n$ son iguales
  • no todos los lados de $A_1A_2 \dots A_n$ son iguales
  • existe un triángulo $T$ y un punto $O$ en el interior de $A_1A_2 \dots A_n$ tal que los $n$ triángulos $OA_1A_2$, $OA_2A_3$, $\dots$, $OA_{n-1}A_n$ son todos semejantes a $T$ 

NOTAS:

Problema

5.- Borrando divisores de un pizarrón

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 13:42.

Sea $n > 1$ un entero positivo y sean $d_1 < d_2 < ... < d_m$ sus $m$ enteros positivos de manera que $d_1 = 1$ y $d_m = n$. Lalo escribe los siguientes $2m$ números en un pizarrón:

$d_1 , d_2 , ... , d_m , d_1 + d_2 , d_2 + d_3 , ... , d_{m-1} + d_m , N$

donde $N$ es un entero positivo. Después Lalo borra los números repetidos (por ejemplo, si un número repetido aparece 2 veces, el borrará uno de los dos). Después de esto, Lalo nota que los números en el pizarrón son precisamente la lista completa de divisores positivos de $N$. Encuentra todos los posibles valores del entero positivo $n$.

Problema

3.- Orquesta Matemática

Enviado por jesus el 18 de Noviembre de 2022 - 10:52.

Sea $n>1$ un entero y sea $d_1 < d_2 < \dots < d_m$ la lista completa de sus divisiores positivos, incluidos $1$ y $n$. Los $m$ instrumentos de una orquesta matemática se disponen a tocar una pieza musical de $m$ segundos, donde el instrumento $i$ tocará una nota de tono $d_i$ durante $s_i$ segundos (no necesariamente consecutivos), donde $d_i$ y $s_i$ son enteros positivos. Decimos que esta pieza tiene sonoridad $S = s_1 + s_2 + \cdots + s_m $.

Problema

2.- Ataque de torres en un tablero cúbico.

Enviado por Samuel Elias el 12 de Noviembre de 2022 - 22:00.

Sea $n$ un entero positivo. David tiene 6 tableros de ajedrez de $n \times n$ que ha dispuesto de manera que formen las 6 caras de un cubo de $n \times n \times n$. Se dice que dos casillas $a$ y $b$ de este nuevo tablero cúbico están alineadas si podemos conectarlas por medio de un camino de casillas $a = c_1, c_2, \dots, c_m = b$ de manera que cada pareja de casillas consecutivas en el camino comparten un lado, y los lados que la casilla $c_i$ comparte con sus vecinas son lados opuestos del cuadrado $c_i$, para $i = 2, 3, \dots, m-1$. Diremos que dos torres colocadas sobre el tablero se atacan; si las casillas que ocupan están alineadas. David coloca algunas torres sobre el tablero de forma que ninguna ataque a otra.

Problema

Problema 5 - IMO 2022 - Redacción corta pero peligrosa

Enviado por Samuel Elias el 14 de Julio de 2022 - 19:38.

Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen

ap = b! + p

Problema

Secuencia de conjuntos no vacios (OMM 2021 P6)

Enviado por jesus el 18 de Diciembre de 2021 - 14:32.

Determina todos los conjuntos no vacíos $C_1, C_2, C_3, \dots$, tales que cada uno de ellos tiene un número finito de elementos y todos sus elementos son enteros positivos, con la siguiente propiedad: Para cualesquiera enteros positivos $m$ y $n$, la cantidad de enteros positivos en el conjunto $C_m$ más la cantidad de enteros positivos en $C_n$ es igual a la suma de los elementos en el conjunto $C_{m+n}$.

Nota: Al denotar con $|C_k|$ la cantidad de elementos de $C_k$ y con $S_k$ la suma de los elementos de $C_k$, la condición del problema es que para $m$ , $n$ enteros positivos se cumple

$$|C_n|+|C_m| = S_{m+n}$$
Problema

Números digitales (OMM 2021 P5)

Enviado por jesus el 17 de Diciembre de 2021 - 23:35.

Para cada entero $n>0$ con expansión decimal $\overline{a_1a_2 \dots a_k}$ definimos $s(n)$ como sigue:

  • Si k es par, $s(n) = \overline{a_1a_2} + \overline{a_3a_4} + \dots +\overline{a_{k-1}a_k} $
  • Si k es impar, $s(n) = a_1 + \overline{a_2a_3} + \overline{a_4a_5} + \dots +\overline{a_{k-1}a_k} $

Por ejemplo, si $n=123$ entonces $s(n) = 1 + 23 = 24$ y si $n=2021$ entonces $s(n) = 20+21 = 41$.

Decimos que este $n$ es digital si $n$ es múltiplo de $s(n)$. Muestra que entre cualesquiera 198 enteros positivos consecutivos, todos ellos menores que 2000021, hay uno de ellos que es digital.

Problema

La hormiga, el mago y la lava (OMM 2021 P3)

Enviado por jesus el 21 de Noviembre de 2021 - 21:30.

Sean $m,n \geq 2$ dos enteros. En una cuadrícula de $m \times n$, una hormiga empieza en cuadrito inferior izquierdo y quiere camina al cuadradito superior derecho. Cada paso que da la hormiga debe ser a un cuadrito adyacente, de acuerdo a las siguientes posibilidades $\uparrow$, $\rightarrow$ y $\nearrow$. Sin embargo, un malvado mago ha dejado caer lava desde arriba y ha destruido algunos cuadritos de forma tal que:

Problema

Es punto medio si y sólo si el otro es punto medio (OMM 2021 P2)

Enviado por jesus el 20 de Noviembre de 2021 - 23:17.

Sea $ABC$ un triángulo tal que $\angle ACB > 90^\circ$ y sea $D$ el punto de la recta $BC$ tal que $AD$ es perpendicular a $BC$. Considere $\Gamma$ la circunferencia de diámetro $BC$. Una recta que pasa por $D$ es tangente a la circunferencia $\Gamma$ en $P$, corta al lado $AC$ en $M$ (quedando $M$ entre $A$ y $C$) y corta al lado $AB$ en $N$.

Demuestra que $M$ es punto medio de $DP$ si, y sólo si $N$ es punto medio de $AB$.

Problema

Problema 1 - IMO 2019 - Determinar todas las función enteras.

Enviado por jesus el 19 de Junio de 2020 - 17:41.

Sea $\mathbb{Z}$ el conjunto de los números enteros. Determinar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que, para todos los enteros $a$ y $b$, $$f(2a) + 2f(b) = f (f (a + b)).$$

Distribuir contenido