Avanzado

Problemas de nivel nacional.
Problema

Máximo común divisor menor a n

Sean m enteros mayores a 1, y sean $a_1,a_2,\dots,a_m$ enteros positivos menores o iguales a $n^m$. Demuestra que existen enteros positivos $b_1,b_2,\dots,b_m$ menores o iguales a n, tales que $$ mcd( a_1+b_1,a_2+b_2,\dots,a_m+b_m) < n,$$ donde $mcd(x_1,x_2,\dots,x_m)$ denota el máximo común divisor de $x_1,x_2,\dots,x_m$.

 
Problema

Fichas de dominó en un tablero de ajedrez

Una ficha de dominó es de $2\times 1$ o de $1\times 2$ cuadrados unitarios. Determina de cuántas maneras distintas se pueden acomodar exactamente $n^2$ fichas de dominó en un tablero de ajedrez de tamaño $2n\times 2n$ de forma que cualquier cuadrado de $2\times 2$ contiene al menos dos cuadrados unitarios sin cubrir que están en la misma fila o en la misma columna.

 
Problema

Mediatrices que pasan por un punto fijo

Sea $ABC$ un triángulo acutángulo y $P,Q$ puntos sobre $AB$ y $AC$ respectivamente, tal que $AP = CQ$. Demostrar que la mediatriz de $PQ$ pasa por un punto fijo al variar $P$.

 
Problema

XXVIII OMM Problema 3

Sean $\Gamma_{1}$ una circunferencia y $P$ un punto fuera de $\Gamma_{1}$. Las tangentes desde $P$ a $\Gamma_{1}$ tocan la circunferencia en los puntos $A$ y $B$. Considera $M$ el punto medio del segmento $PA$ y $\Gamma_{2}$ la circunferencia que pasa por los puntos $P$, $A$ y $B$. La recta $BM$ interesecta de nuevo a $\Gamma_{2}$ en el punto $C$, la recta $CA$ intersecta de nuevo a $\Gamma_{1}$ en el punto $D$, el segmento $DB$ intersecta de nuevo a $\Gamma_{2}$ en el punto $E$ y la recta $PE$ intersecta a $\Gamma_{1}$ en el punto F (con E entre P y F). Muestra que las rectas $AF$, $BP$ y $CE$ concurren.

 
Problema

Focos distribuidos en una circunferencia (P1)

Se tienen 25 focos distribuidos de la siguiente manera: los primeros 24 se disponen en una circunferencia colocando un foco en cada uno de los vértices de un 24-ágono regular, y el foco restante se coloca en el centro de dicha circunferencia. Se permite aplicar cualquiera de las siguientes dos operaciones:

 
Problema

Relaciones combinatorias

Sean $r,n$ enteros no negativos tales que $r\leq{n}$.

a) Demostrar que $$\frac{n+1-2r}{n+1-r}C(n,r)$$ es un entero.

b) Demostrar que

$$ \sum_{r=0}^{\lfloor n/2\rfloor}\frac{n+1-2r}{n+1-r}C(n.r)<2^{n-2}$$ para todo $n\geq 9$.
(Nota: $\lfloor x\rfloor$ es el mayor entero menor o igual que x, y $C(n,r)$ es el número de subconjuntos de tamaño r tomados de un conjunto de tamaño n.) 

 
Problema

Viaje redondo

Air Michael y Air Patrick operan vuelos directos que conectan Belfast, Cork, Dublin, Galway, Limerick y Waterford. Para cada par de ciudades exactamente una de las aerolíneas opera la ruta (en ambos sentidos) conectando las ciudades.Demostrar que hay cuatro ciudades para las cuales una de las aerolíneas opera un viaje redondo. (Un viaje redondo para las ciudades P,Q,R,S es un viaje que va de P a Q, de Q a R, de R a S y de S a P.)

 
Problema

Una recta variable que pasa por un punto fijo

El punto P está fijo en una circunferencia y el punto Q está fijo en una recta. Un punto variable R se mueve sobre la circunferencia pero sin alinearse con P y Q. La circunferencia por P,Q y R corta a la recta de nuevo en V. Demostrar que la recta VR pasa por un punto fijo.

 
Problema

Líneas isogonales y circunferencias con centro en los lados.

Sea $ABCD$ un cuadrilátero cíclico convexo. Sea $H$ un punto sobre $BD$ tal que $AH$ y $AC$ son líneas isogonales (reflejadas en la bisectriz del ángulo en $A$).

Consideremos $\mathcal{C}_B$ y $\mathcal{C}_D$ las circunferencias con cuerda $HC$ y con sus respectivos centros en $AB$ y $AD$.

Llamemos $S$ y $P$ a la intersección de $\mathcal{C}_B$ con la recta $AB$; el vértice $A$ más cerca de $S$ que de $P$. Análogamente llamemos $T$ y $Q$ a la intersección de $\mathcal{C}_D$ con la recta $AD$; el vértice $A$ más cerca de $T$ que de $Q$. Entonces se satisfacen las siguiente propiedades

 
Problema

P4. IMO 2014 - Concurrencia de dos rectas y una circunferencia

Los puntos $P$ y $Q$ están en el lado $BC$ del triángulo acutángulo $ABC$ de modo que $\angle PAB = \angle BCA$ y $\angle CAQ = \angle ABC$. Los puntos $M$ y $N$ están en las rectas $AP$ y $AQ$, respectivamente, de modo que $P$ es el punto medio de $AM$, y $Q$ es el punto medio de $AN$. Demostrar que las rectas $BM$ y $CN$ se cortan en la circunferencia circunscrita del triángulo $ABC$