Avanzado

Problemas de nivel nacional.
Problema

P1. IMO 2014 - Sucesión Inifinita

Sea $a_0<a_1< a_2 < \cdots $ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que $$a_n < \frac{a_0+a_1 + \cdots + a_n}{n} \leq a_{n+1}$$

 
Problema

Números divertidos

Un entero positivo n es divertido si para todo divisor positivo d de n, d+2 es un número primo. Encuentre todos los npumeros divertidos que tengan la mayor cantidad posible de divisores.

 
Problema

Todo es cuestión de álgebra

Sean $a,b,c$ y $d$ números todos distintos entre sí, tales que
$\frac{a}{b} +\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=4$ y $ac=bd$

Determine el máximo valor de posible de
$\frac{a}{c} +\frac{b}{d}+\frac{c}{a}+\frac{d}{b}$

 
Problema

Parejas especiales

Una pareja de enteros es especial si es de la forma $(n,n-1)$ o de la forma $(n-1,n)$ con $n$ un entero positivo. Muestra que una pareja $(n.m)$ de enteros positivos que no es especial, se puede representar como suma de dos o más parejas especiales diferentes si y sólo si los enteros $n$ y $m$ satisfacen la desigualdad $n+m\geq(n-m)^2$.

Nota: la suma de dos parejas se define como $(a.b)+(c,d)=(a+c,b+d)$

 
Problema

Un cubo y muchos cubitos

Un cubo de $n \times n \times n$ está construido con cubitos de  $1\times 1 \times 1 $, algunos negros y otros blancos, de manera que en cada uno de los subprismas de $n \times 1 \times 1 $, de $1 \times n \times1 $ y de  $1 \times 1 \times n$ hay exactamente dos cubitos negros y entre ellos hay un número par (posiblemente 0) de cubitos blancos intermedios. Por ejemplo, en la siguiente ilustración, se muestra una posible rebanada de cubo de  $6 \times 6 \times 6 $ (formada por 6 subprismas de $1\times{6}\times{1}$

 
Problema

Elección con restricción negativa

¿Cuál es la mayor cantidad de elementos que puedes tomar del conjunto de números
enteros $\{1,2, . . . ,2012,2013\}$, de tal manera que entre ellos no haya tres distintos,
digamos $a, b, c$, tales que $a$ sea divisor o múltiplo de $b−c$?
 

 
Problema

Competencia entre 7 jugadores!!!

Se quiere diseñar una competencia entre 7 jugadores de tal manera que de cualquier colección de 3 de ellos al menos dos compitan entre sí. ¿Cuál es el mínimo número de juegos con el que se puede lograr esta condición?

 
Problema

Testamento..... A ver si puedes

La mamá de Vero esta haciendo su testamento. A sus tres hijas le dará en herencia el número de pesos que calculen como sigue:

 
Problema

EGMO Problema 2 - Máxima cantidad de renglones en una tabla

Sea $n$ un entero positivo, encuentra el entero más grande $m$, en términos de $n$ con la siguiente propiedad:

Una tabla con m renglones y n columnas puede ser llenada con números reales de tal manera que dos diferentes renglones,  $[a_1, a_2, \dots , a_n]$ and $[b_1, b_2, \ldots, b_n]$ satisfacen que $$\max(|a_1 − b_1|, |a_2 − b_2|,\dots , |a_n − b_n|) = 1.$$

©Traducido de la versión en ingles por Matetam.com

 
Problema

EGMO Problema 1 - Sobre dos circuncentros y demostrar que una línea es perpendicular

Sea ABC un triángulo con circuncentro O. Los puntos D, E y F se encuntran en el interio de los lados BC, CA y AB respectivamente, de tal manera que DE es perpendicular a CO y DF such that DE is perpendicular to CO and DF is perpendicular to BO. (Por punto interior nos referimos, por ejemplo, a que el punto D se encuentra sobre la línea BC y D está entre B y C en esa línea)

Consideremos K el circuncentro del triángulo AFE. Desmuestra que las líneas DK y BC son perpendiculares.

©Traducido de la versión en ingles para Matetam.com