Avanzado

Problemas de nivel nacional.
Problema

Ejercicio 3.2

Enviado por jesus el 1 de Marzo de 2010 - 19:03.

Sea $\pi$ un plano proyectivo. Usa la definición 3.11(la definición de espacio proyectivo pero simplificada) para probar que:

P3'. Existe almenos tres líneas no concurrentes en $\pi$.

P4'. Exiten almenos tres líneas que pasan por cualquier punto en $\pi$.

Deduce que el principio de dualidad es válido en un plano proyectivo.

Problema

Ejercicio 3.1.7

Enviado por jesus el 1 de Marzo de 2010 - 18:57.

Demuestra que para cuales quiera $S_r$ y $S_n$ espacios proyectivos, el espacio $S_r \oplus S_n $ está formado por aquellos (y sólo aquellos) puntos que se encuentran sobre un línea que une un punto de $S_r$ y uno de $S_n$

Problema

Ejercicio 3.1.5

Enviado por jesus el 25 de Febrero de 2010 - 12:41.

Sean $\ell$, $m$ y $n$ tres líneas mutuamente oblicuas (i.e, no dos de ellas se intersectan) en un espacio proyectivo $S_3$ de dimensión 3. Demuestre que por cada punto de $\ell$ pasa una única línea $r$ que intersecta a $m$ y $n$.

Esas líneas son llamadas $(\ell, m, n)$-transversales. El conjunto de $\mathcal{R}$ de todas las $(\ell, m, n)$-transversales es llamado un regulus, y algunas veces es denotado por $\mathcal{R}(\ell, m, n)$. Demuestre que no hay dos $(\ell, m , n)$-transversales distintas que se intersecten.

Problema

Ejercicio 3.1.2

Enviado por jesus el 25 de Febrero de 2010 - 02:46.

Dos planos en un espacio proyectivo de dimensión 4, $S_4$, se dice que son oblicuos (skew en inglés) si se intersectan en un sólo punto. Sean $\pi$, $\alpha$ y $\beta$ tres planos mutuamente oblicuos en $S_4$. Demuestra que existe un único plano de $S_4$ que intesecta a cada uno de los planos $\pi$, $\alpha$ y $\beta$ en una recta.

Problema

Ejercicio 2.1.4

Enviado por jesus el 25 de Febrero de 2010 - 01:40.
Problema

Ejercicio 2.1.2

Enviado por jesus el 25 de Febrero de 2010 - 01:13.

Sea $ABCD$ un cuadrángulo en el plano Euclideano extendido (PEE). Sea $X = AB \cap CD$, $Y= BD \cap CA$, $Z = AD\cap BC$. El triángulo $XYZ$ es llamado triángulo diagonal.

Dibuja la configuración dual (el cuadrilátero y su trilátero diagonal).

Problema

El fácil de la IMO 1961

Enviado por jmd el 2 de Enero de 2010 - 09:05.

Resolver el sistema de ecuaciones (donde $a,b$ son constantes):

x+y+z&=a\\ x^2+y^2+z^2&=b^2\\ xy&=z^2

Dar, además, las condiciones que deben satisfacer $a,b$ para que las soluciones del sistema $x,y,z$ sean números positivos distintos.

Problema

XXIIIOMM Problema 6

Enviado por jmd el 11 de Noviembre de 2009 - 12:17.

En una fiesta con n personas se sabe que de entre cualesquiera 4 personas, hay 3 de las 4 que se conocen entre sí o hay 3 que no se conocen entre sí. Muestra que las n personas se pueden separar en 2 salones de manera que en un salón todos se conocen entre sí y en el otro salón no hay dos personas que se conozcan entre sí.

Problema

XXIIIOMM Problema 5

Enviado por jmd el 11 de Noviembre de 2009 - 12:13.

Considera un triángulo ABC y un punto M sobre el lado BC. Sea P la intersección de las perpendiculares a AB por M y a BC por B, y sea Q la intersección de las perpendiculares a AC por M y a BC por C. Muestra que PQ es perpendicular a AM si y sólo si M es punto medio de BC.

Problema

XXIIIOMM Problema 4

Enviado por jmd el 11 de Noviembre de 2009 - 12:03.

Sea $n>1$ un entero impar y sean $a_1,a_2,\ldots,a_n$ números reales distintos. Sea $ M $ el mayor de estos números y sea $m$ el menor de ellos. Muestra que es posible escoger los signos de la expresión $s=\pm {a_1} \pm {a_2}\pm \ldots \pm {a_n}$ de manera que $m<s<M$.

Distribuir contenido