Intermedio

Problemas de nivel estatal y similares.
Problema

Muchos 1's

Muestra que para todo entero positivo n, primo relativo con 10 existen infinidad de múltiplos de n cuyos dígitos son solo unos. 

 
Problema

Problema 5. 29a Olimpiada Mexicana de Matemáticas

Sea $I$ el incentro de un triángulo acutángulo $ABC$. La recta $AI$ corta por segunda vez al circuncírculo del triángulo $BIC$ en $E$. Sean $D$ el pie de la altura desde $A$ sobre $BC$ y $J$ la reflexión de $I$ con respecto a $BC$. Muestra que los puntos $D$, $J$ y $E$ son colineales.

 

 

 
Problema

Problema 4. 29a Olimpiada Mexicana de Matemáticas

Sea $n$ un entero positivo. María escribe en un pizarrón las $n^3$ ternas que se pueden formar tomando tres enteros, no necesariamente distintos, entre $1$ y $n$, incluyéndolos. Después, para cada una de las ternas, María detetermina el mayor (o los mayores, en caso de que haya más de uno) y borra los demás. Por ejemplo, en la terna $(1,3,4)$ borrará los números $1$ y $3$, mientras que en la terna $(1,2,2)$ borrará sólo el número $1$.
 
Muestra que, al terminar este proceso, la cantidad de números que quedan escritos en el pizarrón no puede ser igual al cuadrado de un número entero.
 
Problema

Problema 3. 29a Olimpiada Mexicana de Matemáticas

Sea $\mathbb{N}=\{1, 2, 3, \ldots \}$ el conjunto de los números enteros positivos. Sea $f:\mathbb{N} \rightarrow \mathbb{N}$ una función, la cual asigna a cada número entero positivo, un número entero positivo. Supón que $f$ satisface las siguientes condiciones:
  1. $f(1)=1$
  2. Para todos $a,b$ enteros positivos, se cumple que
    $$f(a+b+ab)=a+b+f(ab)$$
  3. .
Encuenta el valor de $f(2015)$
 
Problema

Problema 1. 29a Olimpiada Mexicana de Matemáticas

Sea $ABC$ un triángulo y sea $H$ su ortocentro. Sea $PQ$ un segmento que pasa por $H$ con $P$ en $AB$, $Q$ en $AC$ y tal que $\angle PHB=\angle CHQ$. Finalmente en el ciruncírculo del triángulo $ABC$ considera $M$ el punto medio del arco $BC$ que no contiene a $A$. Muestra que $MP=MQ$.

 
Problema

Problema 4(C)

En una circunferencia se marcan 60 puntos, de los cuales 30 se colorean de rojo, 20 de azul y 10 de verde. La circunferencia queda así dividida en 60 arcos y a cada uno de ellos se les asigna un número de acuerdo a la siguiente regla:

--1 si une un punto rojo con uno verde
--2 si une un punto rojo con uno azul
--3 si une un punto azul con uno verde
--0 si une dos puntos del mismo color

¿Cuál es la mayor suma posible de los números asignados a los arcos? (Justifica tu respuesta.)

 
Problema

Problema 3(G)

Sea $ABC$ un triángulo con $AB\neq{AC}$. Sean $H$ su ortocentro, $O$ su circuncentro y $D$ el punto medio de $BC$. Sea $P$ la intersección de $AO$ y $HD$. Demostrar que los triángulos $AHP$ y $ABC$ tienen el mismo baricentro.
 
Problema

Elemental de números --pero no trivial

Hay siete cajas numeradas del 1 al 7 y alineadas. Tú tienes 2015 tarjetas que colocas en las cajas de una por una. La primera tarjeta la colocas en la primera caja, la segunda en la segunda, hasta llegar a la séptima carta la cual colocas en la caja 7. En ese momento empiezas a colocar las tarjetas en la otra dirección colocando la carta 8 en la caja 6, la 9 en la 5, hasta llegar a la carta 13 que colocas en la caja 1. La tarjeta 14 la colocas entonces en la caja 2, y continuas así hasta que cada tarjeta haya sido distribuida. ¿En cuál caja se coloca la última tarjeta? (Justifica tu respuesta.)

 
Problema

El primero de la EGMO

Sea $\triangle ABC$ un triángulo acutángulo, y sea $D$ el pie de la altura trazada desde $C$. La bisectriz de $\angle ABC$ intersecta a $CD$ en $E$ y vuelve a intersectar al circuncírculo $\omega$ de $\triangle ADE$ en $F$. Si $\angle ADF = 45°$, muestra que $CF$ es tangente a $\omega$.

 
Problema

Trapecio Isósceles circunscrito a una circunferencia

Un trapecio Isósceles ABCD esta circunscrito a una circunferencia, sus bases miden 4mts y 9mts. Hallar el área del trapecio.