Intermedio

Problemas de nivel estatal y similares.
Problema

¿Conectar datos a conclusión? ¡Línea media!

Sea $D$ un punto en el lado $CA$ del triángulo $ABC$ de tal manera que $AB=CD$. Si $E,F$ son puntos medios de $AD,BC$, respectivamente, y $M$ es la intersección de de $AB$ y $FE$, demostrar que $AM=AE$.

 
Problema

Ejercicio con puntos medios

Sean $CBD$ un triángulo y $A$ un punto en la prolongación del lado $BC$ con $C$ entre $A$ y $B$. Sean $M,N,P$ los puntos medios de los segmentos $AB,CD,DB$, respectivamente. Demostrar que si $Q$ es el punto medio de $MN$ y $E$ es el punto de intersección de $PQ$ y $AB$, entonces $E$ es el punto medio de $AC$.

 
Problema

Demostrar punto medio --si un ángulo es el triple de otro

 

Sean $W_1$ y $W_2$ dos circunferencias de centros $O_1$ y $O_2$, respectivamente, que se intersectan en los puntos $A$ y $B$. El punto $C$ está sobre $W_1$ y es diametralmente opuesto a $B$. Las rectas $CB$ y $CA$ cortan de nuevo a $W_2$ en los puntos $P$ y $Q$, respectivamente, donde el punto $B$ está entre $C$ y $Q$. Las rectas $O_1A$ y $PQ$ se intersectan en el punto $R$. Si la medida del ángulo $PBQ$ es el triple que la del ángulo $PCQ$, demuestra que $AO_1=AR$

 
Problema

Plantas vs Zombies

 

En la versión 20.12 del juego Plantas vs Zombies, el campo de batalla es un jardín que se divide en 45 casillas, como se muestra en el dibujo. En esta versión del juego debes colocar en cada casilla una planta o un zombie y ganas si neutralizas el jardín. Para ello debe haber en cualquier cuadro de $2\times2$ casillas dos plantas y dos zombies. Encuentra el número de acomodos posibles que te permita ganar el juego.

 
Problema

Colocación de fichas en el borde de un tablero

 

Luis tiene un tablero cudriculado con la misma cantidad de filas que de columnas. Las casillas del contorno del tablero están coloreadas de gris. También tiene suficientes fichas numeradas (1,2,3,...) que coloca en las casillas grises de la siguiente manera:

La ficha 1 la pone en la casilla izquierda y, a partir de ahí, el resto las coloca una en cada casilla, consecutivamente de menor a mayor en sentido de las manecillas del reloj. Una vez que llega a la posición inicial sigue colocando fichas sobre las que ya están puestas. Deja de poner fichas cuando observa que los números que están a la vista en las casillas de las esquinas del tablero suman 2012.

 
Problema

Problemas del segundo dia del nacional 12 ONMAS

 
Problema

Tesoro de Hernán Cortés --en 2012 cofres

En la Bahía de la Paz, Hernán Cortés guardó su tesoro en 2012 cofres con sus respectivos candados. Cada candado y su cofre están numerados del 1 al 2012. Cortés metió al azar una llave en cada cofre y cerró los candados para que nadie tomara el tesoro.  Mucho tiempo después, se halló el tesoro de Cortés. Los arqueólogos van a forzar los candados marcados con los números 1 y 2 para obtener así dos de las llaves con la esperanza de que con ellas sea posible abrir sucesivamente todos los demás cofres. ¿De cuántas maneras pudieron quedar distribuidas inicialmente las llaves dentro de los cofres de manera que la estrategia de los arqueólogos sea exitosa?

 
Problema

Encontrar ángulo dada una bisectriz

En un rectángulo $ABCD$, $F$ es el punto medio del lado $CD$ y $E$ es un punto del lado $BC$ tal que $AF$ es bisectriz del ángulo $EAD$. Si el ángulo $AEF$ mide 68 grados ¿cuál es la medida del ángulo $BAE$?

 
Problema

Múltiplo de cada uno de sus dígitos

Encuentra el mayor número $N$ que cumpla, al mismo tiempo, las siguientes condiciones:

  • a) Todos los dígitos de $N$ son distintos,
  • b) $N$ es múltiplo de cada uno de sus dígitos.
 
Problema

Los problemas del nacional de la 12 ONMAS