Geometría

Entrada de blog

Una comunicación que calla: sobre el concepto de antiparalelas

Voy a ilustrar en este post la multiplicidad de conexiones que un cognizador debería establecer con una teoría previa en el momento de resolver (o estudiar la solución a) un problema de matemáticas escolares. Sostengo que la forma condensada de presentar las soluciones es una forma reticente de comunicar --así sea de manera involuntaria o por razones de estilo de redacción.

 
Entrada de blog

El cuadrado de Polya --con Geogebra

En este post comento sobre un posible proceso de solución al problema clásico de inscribir un cuadrado en un triángulo, usando el software de geometría dinamico Geogebra.

El cuadrado de Polya

En el problem solving de las matemáticas escolares hay algunos problemas que son ya legendarios. Uno de ellos es el problema del cuadrado de Polya. Se trata de inscribir un cuadrado en un triángulo. A continuación su enunciado:

Inscribir un cuadrado en un triángulo $ABC$. Dos de los vértices del cuadrado deben estar en la base $BC$, y los otros dos en los otros dos lados, uno en cada uno.

 
Entrada de blog

Dualidad en geometría

En este post voy a argumentar que el punto medio de un segmento y la bisectriz de un ángulo son conceptos geométricos que se pueden ver como duales. Una instancia de uso de esa forma de ver esos conceptos duales se presenta en la forma de dos construcciones geométricas no triviales.

 
Entrada de blog

Ficciones matemáticas

El concepto y la palabra ficción proviene del latín: fictus=fingido, inventado. Está asociado al de mímesis (imitación). En este sentido etimológico, entonces, una ficción es una imitación (o copia) de la realidad, o bien una realidad verosímil (que podría suceder) y que por tanto es posible. 

 
Entrada de blog

Conjeturar un lugar geométrico con Geogebra


Voy a ilustrar en este post el uso de la herramienta de arrastre de Geogebra como una forma de conjeturar un lugar geométrico.

 

 
Entrada de blog

Juego de evocaciones (en un problema de ENLACE bachillerato)

Si bien en la escuela mexicana no es necesaria la eficacia en el problem solving, ésta sí es relativamente importante en los exámenes estandarizados que miden actualmente el desempeño escolar de los adolescentes en matemáticas. Por ejemplo el examen ENLACE --Evaluación Nacional del Logro Académico en Centros Escolares. (ENLACE es importante pues se trata de una mirada externa al quehacer de la escuela y, con un poquito de vergüenza, es muy difícil ignorar su importancia.) 

 
Entrada de blog

Ecuación de la recta

Sean $l$ una recta cualquiera en el plano cartesiano y $A=(x_1,y_1)$ un punto sobre ella. Como la recta se define a través de su pendiente, se tiene que considerar el caso especial en que la pendiente no está definida por la división entre cero (caso de la recta vértical). Así pues:

 
Entrada de blog

Tres conceptos básicos de la geometría analítica

Este post introduce los conceptos más básicos de la geometría analítica: distancia entre dos puntos, pendiente de una recta y coordenadas del punto medio. Supone que el lector ya conoce las reglas de representación de puntos en el plano cartesiano de coordenadas.

 
Entrada de blog

PISA 2009, OCDE-recomendaciones 2010, y efecto Casandra

En este post sugiero la razón  por la que una de las recomendaciones de la OCDE para evitar el triste futuro (y presente) educativo de México es imposible de realizar, e incluyo uno de los problemas de matemáticas de PISA 2009, la evaluación internacional de la OCDE que mide el estado de la educación de los países miembros.

 
Entrada de blog

Sobre el principio de no contradicción

El año pasado, al iniciar los entrenamientos de la preselección Tamaulipas para la Olimpiada Mexicana de Matemáticas, les presenté a los preseleccionados el "teorema" clásico de que todos los triángulos son isósceles (Ver mi post Lapsus de razonamiento para una "demostración" ).

Después de presentar la figura a mano alzada en el pizarrón (de hecho, la figura es la fuente de toda la confusión) Luis Brandon pasó al frente y realizó la "demostración" (pues ya la conocía y sabía que estaba trucada).