Teoría de números

Entrada de blog

Una propiedad elemental de la divisibilidad

Voy a discutir en este post una propiedad de la divisibilidad que surge cuando la suma de dos números es múltiplo de un primo. Se le podría llamar propiedad de transferencia de la divisibilidad. Incluyo dos instancias de uso en el problem solving de olimpiada.

Una propiedad de transferencia

Considere la suma $a+b$ de dos números enteros y supongamos que es múltiplo de un primo $p$. Puede suceder que ninguno de los sumandos sea múltiplo de $p$. Pero si alguno lo es, entonces también lo es el otro. Formalmente, la propiedad se puede establecer así:

$a,b\in\mathbb{Z},p$ primo, $p|a+b\Rightarrow (p|a\Leftrightarrow p|b)$

 
Entrada de blog

Sobre el problema 4 de la XXV OMM

Posiblemente el problema más elemental del concurso nacional correspondiente a la XXV Olimpiada de matemáticas sea el problema 4... si no fuera porque, según las reglas del concurso, la demostración del mínimo es obligada. El problema es el siguiente:

Problema 4 (de la XXVOMM): Encuentra el menor entero positivo tal que, al escribirlo en notación decimal, utiliza exactamente dos dígitos distintos y es divisible entre cada uno de los números del 1 al 9.

 

Solución comentada

 
Entrada de blog

La dialéctica entre técnica y teoría

La dialéctica es un método de razonamiento que se basa en la contradicción: cada afirmación (tesis) tiene una antítesis que la contradice; y del enfrentamiento entre ambas surge una síntesis que elimina la contradicción (y la síntesis se convierte en la nueva tesis que encontrará su antítesis, etc.)

 
Entrada de blog

Duro de Matar y el problema de las jarras de agua.

En este post presento un video con el fragmento de la película de Duro de Matar donde aparece el problema de las jarras de agua. Y poteriormente, daré un solución a ese problema.

 
Entrada de blog

Combinación lineal de enteros.

Un teorema importante que relaciona las combinaciones lineales con el máxicomo común divisor es el teorema de Bezout. Visiten la liga anterior si no lo conocen.

En este post, voy a ver algunas consecuencias de este teorema que pueden ser de interés para todos.

Me gustaría que el lector de este post, se tomara unos minutos en intentar los problemas que vayamos planteando y luego continúe con la lectura.

Problema1. Encuentra, si existen, enteros $x$ e $y$ tales que se satisface la siguiente identidad: $$15x + 6y = 2009$$

 
Entrada de blog

Cuadrados perfectos

Cuadrados perfectos

Un cuadrado perfecto, en la terminología de la teoría de números, es un número que puede ser expresado como el cuadrado de otro. A continuación vamos a enunciar y a demostrar algunos teoremas acerca de los cuadrados perfectos.

Teoremas básicos

 

Teorema -1

Teorema. Si$ k $ es un cuadrado perfecto, los exponentes en su factorización prima son todos pares.