Noticias

Noticia

Problemas ONMAPS 2013 --primaria

Enviado por jmd el 7 de Mayo de 2013 - 21:54.

Los siguientes son los problemas del nivel primaria de la Olimpiada Nacional de Matemáticas para Alumnos de Primaria y Secundaria (ONMAPS) en su versión 2013 realizada en Culiacán, Sinaloa. Las gracias le sean dadas a Ramón j. Llanos Portales por compartirlos para la comunidad MaTeTaM. 

1. El año pasado, Adán y su abuela tenían (cada uno) más de 9 y menos de 100 años, y sus edades eran números primos. Además, al invertir los dígitos de la edad de alguno de ellos, se obtenía la edad del otro. Este año, la edad de la abuela es múltiplo de la edad de Adán. ¿Cuántos años tenía la abuela cuando Adán nació?

Noticia

Selección Tamaulipas para la ONMAS 2013 --actualizada

Enviado por jmd el 22 de Abril de 2013 - 11:39.

Los siguientes alumnos componen la selección Tamaulipas de la XIII ONMAS.y IV ONMAP

AXEL G VILLANUEVA CUELLAR  6°    ESC. PRIMARIA E. C.REBSAMEN         32
AGUSTIN ZAVALA ARIAS               6°    ESC. PRIMARIA VIRGINIA A GARZA      28

BELEM A MIRANDA HERNÁNDEZ 1° Esc. Sec. Gral. 1 Cd.Victoria                    35

Noticia

Selección Tamaulipas para la ONMAS 2013

Enviado por jmd el 19 de Abril de 2013 - 21:35.

La selección Tamaulipas para la Olimpiada de Matemáticas para alumnos de primaria y secundaria quedó este viernes 19 de abril de la siguiente manera:

NOMBRE                               GRADO         ESCUELA                       PUNTOS

AXEL G VILLANUEVA CUELLAR 6°    ESC. PRIMARIA E. C. REBSAMEN   32
AGUSTIN ZAVALA ARIAS            6°    ESC. PRIMARIA VIRGINIA A GARZA 28

Noticia

Concurso estatal ONMAS Tamaulipas 2013

Enviado por jmd el 15 de Abril de 2013 - 19:58.

Es el viernes 19 de abril en las instalaciones de la UAMCEH-UAT (Centro UNiversitario Victoria) a las 9 de la mañana.

Pueden participar los niños y adolescentes inscritos en el sistema educativo tamaulipeco en alguno de los niveles quinto y sexto de primaria o secundaria.

Se elegirán 8 participantes los cuales formarán la selección Tamaulipas que competirá los días primeros de mayo (1,2,3,4) en el concurso nacional en Culiacán, Sinaloa. La selección tiene cubiertos los gastos de transporte, hospedaje y alimentación.

Va la convocatoria atachada para que se la muestren a su profesor y los lleven a participar en este evento tan importante.

Los saluda

jmd

Noticia

Invitación a curso de matemáticas de concurso

Enviado por jmd el 29 de Enero de 2013 - 19:52.

Para iniciar a calentar el ambiente de las matemáticas de concurso en este año 2013, la UAMCEH-UAT y la Delegación Tamaulipas de la OMM invitan a todos los adolescentes menores de 15 de Tamaulipas a inscribirse en un  

Noticia

Calendario dodecaédrico con origami 2013

Enviado por vmp el 27 de Diciembre de 2012 - 22:21.

Para hacer el calendario sólo tienen que descargar, imprimir, doblar y armar.  Aquí está el video con las intrucciones de armado que hicimos para la versión 2010.

Algunos de ustedes nos han comentado que les sobran muchas pestañas a la hora de armarlo. Les queremos decir que sí es posible armarlo sin pegamento y sin que sobren pestañas. 

Noticia

XXVI OMM --los problemas del segundo día

Enviado por jmd el 13 de Noviembre de 2012 - 15:20.

Problema 4. A cada entero positivo se le aplica el siguiente proceso: al número se le resta la suma de sus dígitos, y el resultado se divide entre 9. Por ejemplo, el resultado del proceso aplicado al 938 es 102, ya que (938-(9+3+8))/9=102. Aplicando dos veces el proceso a 938 se llega a 11, aplicado 3 veces se llega al 1. Cuando a un entero positivo $n$ se le aplica el proceso una o varias veces, se termina en 0. Al número al que se llega antes de llegar al 0, lo llamamos la casa de $n$. ¿Cuántos números menores que 26000 tienen la misma casa que 2012?

Noticia

XXVI OMM --los problemas del primer día

Enviado por jmd el 12 de Noviembre de 2012 - 13:22.

Problema 1. Sean $C_1$ una circunferencia con centro $O$, $P$ un punto sobre ella y $l$ la recta tangente a $C_1$ en $P$. Considera un punto $Q$ sobre $l$, distinto de $P$, y sea $C_2$ la circunferencia que pasa por $O, P$ y $Q$. El segmento $OQ$ intersecta a $C_1$ en $S$ y la recta $PS$ intersecta a $C_2$ en un punto $R$ distinto de $P$. Si $r_1$ y $r_2$ son las longitudes de los radios de $C_1$ y $C_2$, respectivamente. Muestra que $PS/SR=r_1/r_2$.

Noticia

Selección Tamaulipas para la XXVI OMM

Enviado por jmd el 25 de Octubre de 2012 - 18:04.

Un poco tarde pero aquí está la selección que acudirá al concurso nacional de la Olimpiada Mexicana de Matemáticas el próximo mes de noviembre. 

Claudia Lorena Cabrera Arjona
Oscar Gilberto Brewer De la Vega
Eduardo Alexis Romo Almazán
Emmanuel Sanchez Sandoval
Gerardo         Cantú González
Mariano         Narváez Pozos

Noticia

Preselección OMM Tamaulipas 2012

Enviado por jmd el 6 de Octubre de 2012 - 17:44.

 

He aquí la lista de la preselección OMM Tamaulipas 2012 (tal y como me la envió el delegado Ramón Jardiel Llanos Portales --así que cualquier aclaración, felicitación  o incluso impugnación, sea ésta con pruebas o sin pruebas, por favor comunicarla directamente a rjardiel5@hotmail.com ).

GABRIELA SAC-NITE GUEVARA MTZ

Distribuir contenido