Álgebra
4.- El término 2023
Sean $x_1$, $x_2$, ..., $x_{2023}$ números reales positivos, todos distintos entre sí, tales que
$a_n$ = $\sqrt{(x_1 + x_2 + ... + x_n)(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n})}$
es entero para todo $n$ = 1, 2, ..., 2023. Demuestra que $a_{2023} \geq 3034$.
3.- Un polinomio, una sucesión infinita
Para cada entero $k \geq 2$, determina todas las sucesiones infinitas de enteros positivos $a_1, a_2, \dots$ para los cuales existe un polinomio $P$ de la forma $P(x) = x^k + c_{k-1}x^{k-1} + ... + c_1x + c_0$, con $c_0, c_1, \dots , c_{k-1}$ enteros no negativos, tal que
$P(a_n) = a_{n+1}a_{n+2} \cdots a_{n+k}$
para todo $n \geq 1$
P7. El orden de $x$, $y$ y $z$ es independiente de $a$ y $b$.
Supongamos que $a$ y $b$ son dos números reales tales que $0 < a < b <1$. Sean :
\[x = \frac{1}{\sqrt{b}} - \frac{1}{\sqrt{a+b}}, \quad y = \frac{1}{b-a} - \frac{1}{b} \quad \textrm{y} \quad z =\frac{1}{\sqrt{b-a}} - \frac{1}{\sqrt{b}} \]Muestra que $x$, $y$ y $z$ quedan siempre ordenados de menor a mayor de la misma manera, independientemente de la elección de $a$ y $b$. Encuentra dicho orden entre $x$, $y$ y $z$.
P4. Encuentra todas las asignaciones f(m,n)
1.- Números Tlahuicas
Un número $x$ es Tlahuica si existen números primos distintos $p_1, p_2 \dots, p_k$ tales que
$$x= \frac{1}{p_1} + \frac{1}{p_2} + ... + \frac{1}{p_k}$$Determina el mayor número Tlahuica que satisface las dos propiedades siguientes:
- 0 < x < 1
- existe un número entero $0 < m \leq 2022$ tal que $mx$ es un entero.
El 6 del último selectivo 2022
Se definen las sucesiones xn y yn mediante las siguientes reglas:
- x0 = 2, x1 = 5, xn+1 = xn + 2xn-1
- y0 = 3, y1 = 4, yn+1 = yn + 2yn-1
Demuestra que no hay números que estén en ambas sucesiones.
Sin miedo al factorial
Determina el menor entero positivo n tal que para todo entero positivo u se cumple que n + u! sea un número de al menos 4 divisores
Promedio de un colección de m números
a) Demuestra que si a una colección de m números le agregamos su promedio, la nueva colección de m+1 números tendrá el mismo promedio.
b) Demuestra que el promedio de una colección de m números es menor o igual a su número más grande, y mayor o igual a su número más pequeño.
El número de Belmaris
André, Belmaris, Claudia, Daniel, Elmer y Germán van a jugar a decir números en ese orden. André y Belmaris podrán elegir sus números, pero los siguientes deben decir el resultado de la multiplicación de los números que dijeron las dos personas antes que ellos, sin equivocarse. Si André dijo "2" y Germán dijo "6 075 000" (seis millones setenta y cinco mil), ¿qué numero dijo Belmaris?
Problema 5 - IMO 2022 - Redacción corta pero peligrosa
Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen
ap = b! + p
