Problemas - Álgebra

Problema

Partir la baraja

Enviado por jmd el 15 de Agosto de 2009 - 06:51.

Sea $ n $ un entero positivo. Una baraja de $2n$ cartas contiene exactamente dos cartas marcadas con cada uno de los enteros $1,2,\ldots,n.$  Las cartas se ordenan en la forma $1,1,2,2,3,3,...,n,n.$  La baraja ya ordenada de esta manera se parte, y resulta que, en las dos partes, los dígitos en las cartas suman la misma cantidad.

Problema

IMO 2009, Problema 5

Enviado por jesus el 1 de Agosto de 2009 - 23:58.

Determinar todas las funciones f del conjunto de los enteros positivos en el conjunto de los enteros positivos tales que, para todos los enteros positivos a y b, existe un triángulo no degenerado cuyos lados miden

$$a, f(b)  \textrm{ y } f(b + f(a) - 1)$$

(Un triángulo es no degenerado si sus vértices no están alineados).

Problema

IMO 2009, Problema 3

Enviado por jesus el 24 de Julio de 2009 - 14:51.

Sea $s_1, s_2, s_3, \ldots $ una sucesión estrictamente creciente de enteros positivos tal que las
subsucesiones
$$s_{s_1} , s_{s_2} , s_{s_3} ,\ldots \textrm{ y } s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \ldots $$
son ambas progresiones aritméticas. Demostrar que la sucesión $s_1, s_2, s_3, . . .$ es también una progresión

Problema

IMO 2009 Problema 1

Enviado por Luis Brandon el 21 de Julio de 2009 - 11:42.

Sea $ n $ un entero positivo y sean $a_1,a_2,...,a_k (k\geq 2)$ enteros distintos del conjunto $ {1,...,n} $, tales que $ n $ divide a $a_i(a_{i+1}-1)$, para $i=1,..., k-1$. Demostrar que $ n $ no divide a $a_k(a_1-1)$.

Problema

Encontrar el término n de una sucesión

Enviado por jmd el 19 de Julio de 2009 - 14:48.

Considere la sucesión $a_1=1$ y, para $ n $ mayor que 1, $a_n=1+2a_{n-1}.$ Encontrar una fórmula para el término n-ésimo y demostrarla por inducción.

Problema

L1.P22 (Una ecuación cuadrática)

Enviado por jmd el 2 de Julio de 2009 - 12:34.

La ecuación $x^2+bx+2=0$ tiene solamente una raíz. Determinar los valores de $b$.

Problema

L1.P6 (Problema cuadrático)

Enviado por jmd el 2 de Julio de 2009 - 09:59.

Si $p^2+1/p^2=7$, con $p$ entero positivo, encontrar el valor de $p+1/p.$

Problema

Problema 7(A)

Enviado por jmd el 27 de Junio de 2009 - 08:50.

Una cuadrilla de jardineros recortó el pasto de dos prados, uno de doble área que el otro. Durante media jornada  toda la cuadrilla trabajó en el prado grande; después de la comida, la mitad trabajó en el prado grande y la otra en el pequeño.

Problema

Problema 2(A)

Enviado por sadhiperez el 26 de Junio de 2009 - 21:22.

Un equipo de pasteleros está compuesto por el viejo panadero y 9 estudiantes. Un cierto día el viejo panadero horneó 9 pasteles más que el promedio de todo el equipo (incluyéndolo a él). Si se sabe que ese día cada estudiante horneó 15 pasteles ¿cuántos pasteles fueron horneados por todo el equipo?

 

Problema

Una factorización no trivial

Enviado por jmd el 20 de Mayo de 2009 - 22:58.

Factorizar las siguientes expresiones algebraicas:

$$x^4 +6x^3 +11x^2 +6x +1$$

$$x^4 +6x^3 +11x^2 +6x$$

Genera un problema de concurso, en vista de las dos factorizaciones.