Problemas - Álgebra

Problema

Suma de max-min diferencias

Enviado por jmd el 10 de Enero de 2012 - 15:04.

Considere los números $1,2,3,\ldots,2008^2$ distribuidos en un tablero de $2008\times 2008$, de modo que en cada casilla haya un número distinto. Para cada fila y cada columna del tablero se calcula la diferencia entre el mayor y el menor de sus elementos. Sea $S$ la suma de los 4016 números obtenidos. Determine el mayor valor posible de $S$.

Problema

Sucesión con primer entero en la posición 2007

Enviado por jmd el 10 de Enero de 2012 - 08:23.

Dado un entero positivo $m$, se define la sucesión $\{a_n\}_{n\geq 1}$ de la siguiente manera: $$a_1 = m/2,a_{n+1}=a_n\lceil a_n \rceil $$ Determinar todos los valores de $m$ para los cuales $a_{2007}$ es el primer entero que aparece en la sucesión.
Nota: Para un número real $x$ se define $\lceil x \rceil$ como el menor entero que es mayor o igual a $x$. Por ejemplo, $\lceil \pi \rceil = 4, \lceil 2007 \rceil = 2007$.

Problema

Suma de diferencias

Enviado por jmd el 9 de Enero de 2012 - 22:01.

Se consideran $n$ números reales $a_1,a_2,\ldots,a_n$ no necesariamente distintos. Sea $d$ la diferencia entre el mayor y el menor de ellos y sea $$s= \sum_{i\lt j}|a_i-a_j|$$ Demuestre que $(n-1)d\leq s\leq n^2d/4$ y determine las condiciones que deben cumplir estos $n$ números para que se verifique cada una de las igualdades.

Problema

Sistema de ecuaciones

Enviado por jmd el 9 de Enero de 2012 - 21:30.

Determine todas las ternas de números reales $(x, y, z)$ que satisfacen el siguiente
sistema de ecuaciones:
$$xyz = 8,$$
$$x^2y + y^2z + z^2x = 73,$$
$$x(y - z)^2 + y(z - x)^2 + z(x - y)^2 = 98.$$

Problema

Punto de corte de un conjunto de puntos

Enviado por jmd el 6 de Enero de 2012 - 20:23.

Para un conjunto $H$ de puntos en el plano, se dice que un punto $P$ del plano es un punto de corte de $H$ si existen cuatro puntos distintos $A, B, C, D$ en $H$ tales que las rectas $AB$ y $CD$ son distintas y se cortan en $P$. 

Dado un conjunto finito $A_0$ de puntos en el plano, se construye una sucesión de conjuntos $A_1, A_2, A_3,\ldots$ de la siguiente manera: para cualquier $j\geq 0$ , $A_{j+1}$ es la unión de $A_j$ con el conjunto de todos los puntos de corte de $A_j$.

Demostrar que si la unión de todos los conjuntos de la sucesión es un conjunto finito,
entonces para cualquier $j\geq 1$ se tiene que $A_j = A_1$.

Problema

Ningún término es múltiplo de 2003

Enviado por jmd el 6 de Enero de 2012 - 20:01.

Se definen las sucesiones $(a_n)_{n\geq 0} , (b_n)_{n\geq 0}$ de la siguiente manera:
$$a_0 =1 , b_0 = 4$$ y, para toda $n\geq 0$, $$a_{n+1}=a_n^{2001}+b_n, b_{n+1}=b_n^{2001}+a_n$$ Demuestre que 2003 no divide a ninguno de los términos de estas sucesiones.

Problema

Inferencias a partir de datos incompletos

Enviado por jmd el 6 de Enero de 2012 - 19:51.

Pablo estaba copiando el siguiente problema: 

Considere todas las sucesiones de 2004 números reales $(x_0,x_1,x_2,\ldots,x_{2003}),$  tales que \begin{eqnarray}
x_0 &=&1\\ 0\leq& x_1&\leq 2x_0,\\ 0\leq &x_2&\leq 2x_1,\\
&\vdots&\\ 0\leq &x_{2003}&\leq 2x_{2002}.\end{eqnarray}
Entre todas estas sucesiones, determine aquella para la cual la siguiente
expresión toma su mayor valor: $S =\ldots$.

Problema

Un elemento de la sucesión es negativo

Enviado por jmd el 6 de Enero de 2012 - 18:31.

La sucesión de números reales $a_1, a_2,\ldots$ se define como sigue:
$a_1=50$ y $a_{n+1}=a_n-1/a_n$ para cada entero $n > 0$.
Demuestre que existe un entero $k$, $1 \leq k\leq 2002$, tal que $a_k < 0$.

Problema

Número máximo de subsucesiones aritméticas crecientes

Enviado por jmd el 5 de Enero de 2012 - 16:37.

Determinar el número máximo de progresiones aritméticas crecientes de tres términos que puede tener una sucesión $a_1 < a_2<...<a_n$ de $n > 3$ números reales.

Nota: Tres términos $a_i, a_j, a_k$ de una sucesión de números reales forman una progresión aritmética creciente si $a_i < a_j <a_k$ y $a_j - a_i = a_k - a_j$.

Problema

Desigualdad para cardinalidades de subconjuntos

Enviado por jmd el 5 de Enero de 2012 - 16:32.

Sean $S$ un conjunto de $n$ elementos y $S_1, S_2, \ldots, S_k$ subconjuntos de $S$ ($k\geq 2$), tales que cada uno de ellos tiene por lo menos $r$ elementos.  Demostrar que existen $i$ y $j$, con $1\leq i < j \leq k$ tales que la cantidad de elementos comunes de $S_i$ y $S_j$ es mayor o igual que $$r-\frac{nk}{4(k-1)}$$