Sea $\lambda$ la raíz positiva de la ecuación $t^2 - 1998t - 1 = 0$. Se define la sucesión $x_0 , x_1 ,x_2 ,\ldots, x_n ,\ldots$ por:
$$x_0 = 1, x_{n + 1} = [\lambda x_n],$$ para $n = 0, 1, 2,\ldots$
Hallar el residuo (resto) de la división de $x_{ 1998}$ entre 1998.
NOTA: $[x]$ es el único entero $k$ tal que $k\leq x \leq k + 1$.
Hallar el máximo valor posible de $n$ para que existan puntos distintos $P_1, P_2, P_3,\ldots,P_n$ en el plano y números reales $r_1, r_2,\ldots, r_n$ de modo que la distancia entre cualesquiera dos puntos diferentes $P_i$ y $P_j$ sea $r_i + r_j$.
Alrededor de una mesa redonda están sentados representantes de $n$ países ($n\geq 2$), de tal manera que si dos representantes son del mismo país, entonces sus vecinos de la derecha no son del mismo país. Determinar, para cada $n$, el número máximo de personas que pueden sentarse alrededor de la mesa.
Hallar el mínimo número natural $n$ con la siguiente propiedad: entre cualesquiera $n$ números distintos, en el conjunto $\{1, 2, \ldots, 999\}$ es posible elegir cuatro diferentes $a, b, c, d$, tales que $a + 2b + 3c = d$.
La circunferencia inscrita en el triángulo $ABC$ es tangente a los lados $BC, CA$ y $AB$ en los puntos $D, E$ y $F$, respectivamente. $AD$ corta a la circunferencia en un segundo punto $Q$. Demostrar que la recta $EQ$ pasa por el punto medio de $AF$ si, y solamente si, $AC = BC$.
En una circunferencia hay dados 98 puntos. María y José juegan alternadamente de la siguiente manera: cada uno traza un segmento que une dos puntos que no han sido unidos antes. El juego finaliza cuando los 98 puntos han sido usados como extremos de al menos un segmento. El ganador es quien traza el último segmento. Si José inicia el juego ¿quién puede asegurarse la victoria?