XXXV OMM 2021

XXXV Olimpiada Mexicana de Matemáticas 2021 celebrada virtualmente.
Problema

La hormiga, el mago y la lava (OMM 2021 P3)

Enviado por jesus el 21 de Noviembre de 2021 - 21:30.

Sean $m,n \geq 2$ dos enteros. En una cuadrícula de $m \times n$, una hormiga empieza en cuadrito inferior izquierdo y quiere camina al cuadradito superior derecho. Cada paso que da la hormiga debe ser a un cuadrito adyacente, de acuerdo a las siguientes posibilidades $\uparrow$, $\rightarrow$ y $\nearrow$. Sin embargo, un malvado mago ha dejado caer lava desde arriba y ha destruido algunos cuadritos de forma tal que:

Problema

Es punto medio si y sólo si el otro es punto medio (OMM 2021 P2)

Enviado por jesus el 20 de Noviembre de 2021 - 23:17.

Sea $ABC$ un triángulo tal que $\angle ACB > 90^\circ$ y sea $D$ el punto de la recta $BC$ tal que $AD$ es perpendicular a $BC$. Considere $\Gamma$ la circunferencia de diámetro $BC$. Una recta que pasa por $D$ es tangente a la circunferencia $\Gamma$ en $P$, corta al lado $AC$ en $M$ (quedando $M$ entre $A$ y $C$) y corta al lado $AB$ en $N$.

Demuestra que $M$ es punto medio de $DP$ si, y sólo si $N$ es punto medio de $AB$.

Problema

Misma área y lados en progresión arimética (OMM 2021 P1)

Enviado por German Puga el 12 de Noviembre de 2021 - 02:06.
Los números positivos y distintos $a_1, a_2, a_3$ son términos en una progresión aritmética, y de la misma manera los números positivos y distintos $b_1, b_2, b_3$ son términos de una progresión aritmética. ¿Es posible usar tres segmentos de longitudes $a_1, a_2, a_3$ como bases y otros tres segmentos con longitudes $b_1, b_2, b_3$ como alturas (en algún orden), para construir rectángulos de la misma área?
Distribuir contenido