Problemas - Combinatoria

Problema

Elección de gatos de colores

En un barrio hay gatos de colores. Hay 15 rojos, 18 amarillos y 21 azules. En cada grupo de gatos de colores 2/3 son machos. ¿De cuántas maneras puedes tomar dos gatos del mismo color y el mismo sexo?

 
Problema

Coloreado de pentágono

Problema 1. En el pizarrón hay dibujado el siguiente pentágono. Paty tiene dos colores distintos, blanco y negro. ¿Cuántos pentágonos distintos podría obtener usando sus colores, teniendo en cuenta que va a pintar todas las regiones y que dos pentágonos son iguales si uno es resultado que girar el otro como los de la figura?

 
Problema

Uno sencillo de conteo

En la siguiente puntícula de $11\times11$ se van a formar triángulos isósceles de  tal manera que su lado desigual esté sobre las líneas rosas. ¿Cuántos triángulos isoósceles se pueden formar?

 

 
Problema

Muchos 1's

Muestra que para todo entero positivo n, primo relativo con 10 existen infinidad de múltiplos de n cuyos dígitos son solo unos. 

 
Problema

Problema 4. 29a Olimpiada Mexicana de Matemáticas

Sea $n$ un entero positivo. María escribe en un pizarrón las $n^3$ ternas que se pueden formar tomando tres enteros, no necesariamente distintos, entre $1$ y $n$, incluyéndolos. Después, para cada una de las ternas, María detetermina el mayor (o los mayores, en caso de que haya más de uno) y borra los demás. Por ejemplo, en la terna $(1,3,4)$ borrará los números $1$ y $3$, mientras que en la terna $(1,2,2)$ borrará sólo el número $1$.
 
Muestra que, al terminar este proceso, la cantidad de números que quedan escritos en el pizarrón no puede ser igual al cuadrado de un número entero.
 
Problema

Problema 2. 29a Olimpiada Mexicana de Matemáticas

Sean $n$ un entero positivo y $k$ un entero entre $1$ y $n$. Se tiene un tablero de $n \times n$ color blanco. Se hace el siguiente proceso. Se dibujan $k$ rectángulos con lados de longitud entera, con lados paralelos a los del tablero y tales que su esquina superior derecha coincide con la del tablero. Luego, estos $k$ rectángulos se rellenan de negro. Esto deja una figura blanca en el tablero. ¿Cuántas figuras blancas diferentes podemos obtener, que no se puedan obtener haciendo el proceso con menos de $k$ rectángulos?

 
Problema

Problema 4(C)

En una circunferencia se marcan 60 puntos, de los cuales 30 se colorean de rojo, 20 de azul y 10 de verde. La circunferencia queda así dividida en 60 arcos y a cada uno de ellos se les asigna un número de acuerdo a la siguiente regla:

--1 si une un punto rojo con uno verde
--2 si une un punto rojo con uno azul
--3 si une un punto azul con uno verde
--0 si une dos puntos del mismo color

¿Cuál es la mayor suma posible de los números asignados a los arcos? (Justifica tu respuesta.)

 
Problema

Problema 1 - IMO 2015 - Conjunto de puntos y mediatrices.

Decimos que un conjunto finito $\cal{S}$ de puntos en el plano es equilibrado si para cada dos puntos distintos $A$ y $B$ en $\cal{S}$ hay un punto $C$ en $\cal{S}$ tal que $AC = BC$. Decimos que $\cal{S}$ es libre de centros si para cada tres puntos distintos $A$, $B$, $C$ en $\cal{S}$ no existe ningún punto $P$ en $\cal{S}$ tal que $PA=PB=PC$.

  1. Demostrar que para todo $n \geq 3$ existe un conjunto de $n$ puntos equilibrado.
  2. Determinar todos los enteros $n \geq 3$ para los que existe un conjunto de $n$ puntos equilibrado y libre de centros.
 
Problema

Necesario organizar en casos

¿Cuántos números de 6 dígitos son tales que

  • los dígitos de cada número son del conjunto $\{1,2,3,4,5\}$
  • cualquier dígito que aparece  en el número aparece al menos dos veces?

Ejemplo: 222133 no es admisible 

 
Problema

Problema 9

Un polígono regular de $n$ lados es seccionado en dos partes mediante un solo corte recto. Una parte es un triángulo y la otra es un polígono de $m$ lados. ¿Cómo se relacionan $m$ y $n$ ?