Problemas - Combinatoria

Problema

Cuadrícula n por 4 (P4)

Enviado por jesus el 4 de Diciembre de 2010 - 16:32.

 Sea $n$ un entero positivo. En una cuadrícula $ n\times 4 $, cada renglón es igual a

2 0 1 0

Un cambio es tomar tres casillas

  1. consecutivas en el mismo renglón y
  2. con dígitos distintos escritos en ellas

y cambiar los tres dígitos de estas casillas de la siguiente manera

0 → 1,         1 → 2,        2→0

Problema

Cambios de estado de focos en un tablero (P2)

Enviado por jesus el 28 de Noviembre de 2010 - 18:15.

En cada casilla de un tablero $ n\times n $hay un foco. Inicialmente todos los focos están apagados. En un paso, se permite cambiar el estado de todos los focos en una fila o de todos los focos en una columna (los focos prendidos se apagan y los focos apagados se prenden). Muestra que si después de cierta cantidad de pasos hay uno o más focos prendidos entonces en ese momento hay al menos n focos prendidos.

Problema

La amistad es una relación simétrica

Enviado por jmd el 11 de Octubre de 2010 - 11:27.

 En un grupo de personas, cada dos de ellas tiene exactamente un amigo en común en el grupo. Prueba que hay una persona que es amiga de todas las demás personas en el grupo. (Nota: la amistad es mutua, es decir, si X es amigo de Y, entonces Y es amigo de X.)

Problema

Combinatoria en el campamento

Enviado por jmd el 21 de Septiembre de 2010 - 18:44.

 En un campamento de verano que va a durar n semanas se quiere dividir el tiempo en $3$ períodos de manera que cada período empiece en un lunes y termine un domingo. El primer período se dedicará a labores artísticas, el segundo será para deportes y en el tercero se hará un taller tecnológico. Durante cada período se escogerá un lunes para que un experto en el tema del período dé una plática. Sea $C(n)$ el número de formas en que puede hacerse el calendario de actividades.

Problema

Cambios de estado en cuadrícula 6X6 --con luciérnagas

Enviado por jmd el 31 de Julio de 2010 - 06:38.

En cada cuadrado de una cuadrícula de $6\times6$ hay una luciérnaga apagada o encendida. Una movida es escoger tres cuadrados consecutivos, ya sean los tres verticales o los tres horizontales, y cambiar de estado a las tres luciérnagas que se encuentran en dichos cuadrados. (Cambiar de estado a una luciérnaga significa que si está apagada se enciende y si está encendida se apaga.) Muestra que si inicialmente hay una luciérnaga encendida y las demás apagadas, entonces no es posible hacer una serie de movidas tales que al final todas las luciérnagas estén apagadas.

Problema

Caballos en el tablero

Enviado por jmd el 31 de Julio de 2010 - 05:25.

Considera un tablero de ajedrez. Los números del 1 al 64 se escriben en las casillas del tablero como en la figura:

  1       2       3        4       5        6       7       8
  9     10     11     12     13     14     15     16
17     18     19     20     21     22     23     24

Problema

P3 OMM 2006. Números 1..2n en cuadrícula 2Xn

Enviado por jmd el 29 de Julio de 2010 - 07:28.

Sea $ n $ un número entero mayor que 1. ¿De cuántas formas se pueden acomodar todos los números $1,2,\ldots,2n$ en las casillas de una cuadrícula de $2 \times n$, uno en cada casilla, de manera que cualesquiera dos números consecutivos se encuentren en casillas que comparten un lado de la cuadrícula?

Problema

P5 OMM 2005. Con cualquiera de las restantes se completa

Enviado por jmd el 29 de Julio de 2010 - 07:04.

Sea $N$ un entero mayor que 1. En cierta baraja de $N^3$ cartas, cada carta está pintada de uno de $N$ colores distintos, tiene dibujada una de $N$ posibles figuras y tiene escrito un número entero del 1 al $N$ (no hay dos cartas idénticas). Una colección de cartas de la baraja se llama completa si tiene cartas de todos los colores, o si entre sus cartas aparecen todas la figuras o todos los números. ¿Cuántas colecciones no completas tienen la propiedad de que, al añadir cualquier otra carta de la baraja, ya se vuelven completas?
 

Problema

P6 OMM 2004. Cambios de dirección en cuadrícula 2004X2004

Enviado por jmd el 24 de Julio de 2010 - 10:03.

¿Cuál es el mayor número posible de cambios de dirección en un recorrido sobre las líneas de una cuadrícula de $2004\times 2004$ casillas, si el recorrido no pasa dos veces por el mismo lugar?

Problema

P4 OMM 2004. Número de equipos en un torneo

Enviado por jmd el 24 de Julio de 2010 - 09:47.

Al final de un torneo de futbol en el que cada par de equipos jugaron entre si exactamente una vez y donde no hubo empates, se observó que para cualesquiera tres equipos $A, B, C,$ si $A$ le ganó a $B$ y $B$ le ganó a $C$ entonces $A$ le ganó a $C$. Cada equipo calculó la diferencia (positiva) entre el número de partidos que ganó y el número de partidos que perdió. La suma de todas estas diferencias resultó ser 5000. ¿Cuántos equipos participaron en el torneo? Encuentra todas las respuestas posibles.