Problemas - Combinatoria

Problema

Palabras en un alfabeto

Enviado por jmd el 1 de Junio de 2009 - 08:52.

¿Cuántos números de 5 dígitos tienen todos sus dígitos de la misma paridad y ninguno de sus dígitos es el cero? Nota: se dice que dos números son de la misma paridad si ambos son pares o ambos son impares.
 

Problema

Regiones 2009, problema 1

Enviado por jmd el 31 de Mayo de 2009 - 19:30.

¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
 

Problema

Problema 1, geometrense 2008

Enviado por jesus el 22 de Mayo de 2009 - 19:57.

En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1,  $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.

Problema

Problema 6, XII Olimpiada Iberoamericana

Enviado por jesus el 19 de Mayo de 2009 - 23:42.

Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:

$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$

Problema

P3. OMM 1993

Enviado por jesus el 19 de Mayo de 2009 - 17:49.

Dentro de un pentágono de área 1993 se encuentran 995 puntos. Considere estos puntos junto con los vértices del pentágono.

Muestre que, de todos los triángulos que se pueden formar con los 1000 puntos anteriores como vértices, hay al menos uno de área menor o igual que 1.

Problema

Ladrones de la tercera edad

Enviado por jmd el 27 de Febrero de 2009 - 07:23.

"El Carrizos" y "el Mayel", dos ladrones de la tercera edad, han robado un collar circular con $2m$ cuentas de oro y $2n$ cuentas de plata, dispuestas en un orden desconocido.

Problema

Problema 3 de la OMM 2008

Enviado por jesus el 17 de Noviembre de 2008 - 14:40.

Considera un tablero de ajedrez. Los números del 1 al 64 se escriben en las casillas del tablero como en la figura:

Problema

Las retas de ajedrez

Enviado por jesus el 6 de Noviembre de 2008 - 23:53.

Ana, Beto y Carlos decidieron jugar unas retas de ajedrez: al terminar una partida, el que estaba esperando entraba a jugar contra el ganador. Empezaron las retas con una partida entre Ana y Beto. Al final de varias partidas, Ana acumuló 17 victorias; Beto, 14 y Carlos no contó las suyas.

¿En cuántas partidas se enfrentaron Ana y Beto?

Problema

Elige los signos en la suma

Enviado por jesus el 18 de Octubre de 2008 - 20:11.

¿Existirá alguna manera de elegir los símbolos $ + $ y $ - $ para que se satisfaga la igualdad $ \pm 1 \pm 2 \pm \cdots \pm 100 = 13^2 $ ?

Problema

Cómo rellenar un rectángulo con fichas

Enviado por jesus el 17 de Octubre de 2008 - 19:51.

Para cada par de números naturales $a,b>1$ definamos $P_{a \times b}$ como el polígono que se forma a partir de un rectángulo de $a \times b$ removiendo dos cuadrados de $1 \times 1$ en dos esquinas opuestas . Demuestra que $P_{a \times b}$ se puede cubrir con rectángulitos de $1 \times 2$ sin que se traslapen si y sólo si $ a $ y $ b $ tienen distinta paridad.