Problemas - Combinatoria
Problema 4
Un reloj digital marca las 2 : 35. Ésta es la primera vez después de la medianoche en que los tres dígitos mostrados son números primos diferentes. ¿Cuál es la última vez antes del mediodía en que los tres dígitos en el reloj son números primos diferentes?
Problema 3
Verónica tiene más faldas que blusas y afirma que puede vestirse todos los días de un año normal usando un conjunto falda-blusa sin repetir. Anahí le comenta que si fuera un año bisiesto esto no podría hacerlo. Hallar el número de faldas y blusas que tiene Verónica si se sabe que tiene más de una blusa.
Partición en m parejas
Sean m y n enteros positivos con m > 1. Anastasia particiona el conjunto de enteros $1,2,\dots,2m$ en m parejas. Luego Boris escoje un entero de cada pareja y suma los enteros escogidos. Demuestra que Anastasia puede elegir las parejas de manera que Boris no pueda hacer que su suma sea igual a n.
Fichas de dominó en un tablero de ajedrez
Una ficha de dominó es de $2\times 1$ o de $1\times 2$ cuadrados unitarios. Determina de cuántas maneras distintas se pueden acomodar exactamente $n^2$ fichas de dominó en un tablero de ajedrez de tamaño $2n\times 2n$ de forma que cualquier cuadrado de $2\times 2$ contiene al menos dos cuadrados unitarios sin cubrir que están en la misma fila o en la misma columna.
Coloración en números del 1 al 4027
Cada uno de los números del 1 al 4027 se ha coloreado de verde o de rojo. Cambiar el color de un número es pasarlo a verde si era rojo, y pasarlo a rojo si era verde.
Diremos que dos enteros positivos $m$ y $n$ son cuates si alguno de los números $\frac{m}{n}$ o $\frac{n}{m}$ es un número primo. Un paso consiste en elegir dos números que sean cuates y cambiar el color de cada uno de los números.
Muestra que después de realizar algunos pasos es posible hacer que todos los números del 1 al 2014 sean verdes.
Focos distribuidos en una circunferencia (P1)
Se tienen 25 focos distribuidos de la siguiente manera: los primeros 24 se disponen en una circunferencia colocando un foco en cada uno de los vértices de un 24-ágono regular, y el foco restante se coloca en el centro de dicha circunferencia. Se permite aplicar cualquiera de las siguientes dos operaciones:
Relaciones combinatorias
Sean $r,n$ enteros no negativos tales que $r\leq{n}$.
a) Demostrar que $$\frac{n+1-2r}{n+1-r}C(n,r)$$ es un entero.
b) Demostrar que
$$ \sum_{r=0}^{\lfloor n/2\rfloor}\frac{n+1-2r}{n+1-r}C(n.r)<2^{n-2}$$ para todo $n\geq 9$.
(Nota: $\lfloor x\rfloor$ es el mayor entero menor o igual que x, y $C(n,r)$ es el número de subconjuntos de tamaño r tomados de un conjunto de tamaño n.)
Viaje redondo
Air Michael y Air Patrick operan vuelos directos que conectan Belfast, Cork, Dublin, Galway, Limerick y Waterford. Para cada par de ciudades exactamente una de las aerolíneas opera la ruta (en ambos sentidos) conectando las ciudades.Demostrar que hay cuatro ciudades para las cuales una de las aerolíneas opera un viaje redondo. (Un viaje redondo para las ciudades P,Q,R,S es un viaje que va de P a Q, de Q a R, de R a S y de S a P.)
P6. IMO 2014 - Coloreado de rectas en posición general
Un conjunto de rectas en el plano está en posición general si no hay dos que sean paralelas ni tres que pasen por el mismo punto. Un conjunto de rectas en posición general separa el plano en regiones, algunas de las cuales tienen área finita; a estas las llamamos sus regiones finitas.
Demostrar que para cada $n$ suficientemente grande, en cualquier conjunto de $n$ rectas en posición general es posible colorear de azul al menos $\sqrt{n}$ de ellas de tal manera que ninguna de sus regiones finitas tenga todos los lados de su frontera azules.
P5. IMO 2014 - Monedas fraccionarias
Para cada entero positivo $n$, el Banco de Ciudad del Cabo produce monedas de valor $\frac{1}{n}$. Dada una colección finita de tales monedas (no necesariamente de distintos valores) cuyo valor total no supera $99 + \frac{1}{2}$, demostrar que es posible separar esta colección en 100 o menos montones, de modo que el valor total de cada montón sea como máximo 1.