Problemas - Combinatoria

Problema

P2. IMO 2014 - Configuraciones pacíficas en un tablero

Enviado por jesus el 9 de Julio de 2014 - 10:13.

Sea $n \geq 2$ un entero. Consideremos un tablero de tamaño $n \times n$ formado por $n^2$ cuadrados unitarios. Una configuración de $n$ fichas en este tablero se dice que es pacífica si en cada fila y en cada columna hay exactamente una ficha. Halle el mayor entero positivo $k$ tal que, para cada configuración pacífica de $n$ fichas, existe un cuadrado de tamaño $k \times k$ sin fichas en sus $k^2$ cuadrados unitarios.

Problema

¿Cuál fórmula? ¡Genera la lista!

Enviado por jmd el 1 de Junio de 2014 - 06:55.

1.C. ¿Cuántos números del 10 al 99 son tales que sus dígitos están en orden decreciente? Nota: 31 cumple pero no el 44 ni el 56.

Problema

Huevos y chilaquiles en buffet

Enviado por jmd el 25 de Mayo de 2014 - 10:09.

2.1. Cierto día en el restaurante La Cascada prepararon para el buffet de desayuno una charola de cada uno de los siguientes siete platillos: huevos con tocino, frijoles con queso, huevos con jamón, huevos a la mexicana, chilaquiles rojos, chilaquiles con huevo y chilaquiles verdes. Se le ordena al mesero acomodar las charolas de los platillos, alineadas en la barra, de forma tal que las que contengan huevo queden juntas y que las que contengan chilaquiles queden juntas.

Problema

Ordenar los superhéroes

Enviado por jmd el 24 de Mayo de 2014 - 20:38.

1.5.  Heberto tiene en su colección de figuras de acción de superhéroes dos Hulk, dos Superman,dos Ironman, dos Batman que quiere acomodar en línea sobre una repisa. Quiere que entre cada dos superhéroes iguales haya una cantidad diferente de figuras. Por ejemplo, si hay tres figuras entre los dos Hulk, no podría haber tres figuras entre los dos Batman. De cuántas maneras diferentes puede hacer esto?
 

Problema

Turibús

Enviado por jmd el 11 de Mayo de 2014 - 06:15.

Van a viajar 27 personas en un autobús turístico que puede llevar 12 adentro y 15 afuera (en la parte superior). De las 25 personas, 5 piden ir afuera y 6 piden ir adentro. Si complacemos estas peticiones  ¿de cuántas formas pueden ser distribuidas las personas en el autobús?  (Considere que el orden en que se acomodan en los asientos es irrelevante, solamente importa quienes van adentro y quienes afuera.)

Problema

51 Puntos en un tablero

Enviado por Gustavo10 el 14 de Enero de 2014 - 20:16.

Hay 51 puntos en el interior de un cuadrado de lado 7. Demostrar que siempre es posible encontrar tres de ellos que se encuentren dentro de una circunferencia de radio 1.

Problema

Un cubo y muchos cubitos

Enviado por jmd el 29 de Noviembre de 2013 - 19:29.

Un cubo de $n \times n \times n$ está construido con cubitos de  $1\times 1 \times 1 $, algunos negros y otros blancos, de manera que en cada uno de los subprismas de $n \times 1 \times 1 $, de $1 \times n \times1 $ y de  $1 \times 1 \times n$ hay exactamente dos cubitos negros y entre ellos hay un número par (posiblemente 0) de cubitos blancos intermedios. Por ejemplo, en la siguiente ilustración, se muestra una posible rebanada de cubo de  $6 \times 6 \times 6 $ (formada por 6 subprismas de $1\times{6}\times{1}$

Problema

Triminios en un tablero de 2013x2013!!!

Enviado por cuauhtemoc el 28 de Agosto de 2013 - 20:10.

En un tablero de 2013 × 2013 se han coloreado k casillas de negro y las demás de blanco, de tal manera que no hay tres casillas negras formando un trimino en ”L”y que al pintar cualquier otra casilla de negro se forma un trimino en ”L” de puras ca

Problema

Problemas de un examen estatal de OMM Jalisco

Enviado por cuauhtemoc el 2 de Junio de 2012 - 20:45.

Problema

Competencia entre 7 jugadores!!!

Enviado por cuauhtemoc el 28 de Mayo de 2012 - 17:38.

Se quiere diseñar una competencia entre 7 jugadores de tal manera que de cualquier colección de 3 de ellos al menos dos compitan entre sí. ¿Cuál es el mínimo número de juegos con el que se puede lograr esta condición?