Problemas - Combinatoria

Problema

98 puntos en una circunferencia

Enviado por jmd el 5 de Enero de 2012 - 15:26.

En una circunferencia hay dados 98 puntos. María y José juegan alternadamente de la siguiente manera: cada uno traza un segmento que une dos puntos que no han sido unidos antes. El juego finaliza cuando los 98 puntos han sido usados como extremos de al menos un segmento. El ganador es quien traza el último segmento. Si José inicia el juego ¿quién puede asegurarse la victoria?

 

Problema

Triangulación de un polígono

Enviado por jmd el 20 de Diciembre de 2011 - 21:36.

Un polígono convexo de $n$ lados se descompone en $m$ triángulos, con sus interiores disjuntos, de modo que cada lado de esos $m$ triángulos lo es también de otro triángulo contiguo o del polígono dado. Probar que $m + n$ es par. Conocidos $n$ y $m$ hallar el número de lados distintos que quedan en el interior del polígono y el número de vértices distintos que quedan en ese interior.

Problema

Combinatoria en un tablero $3\times7$

Enviado por jmd el 20 de Diciembre de 2011 - 21:34.

Con 21 fichas de damas, unas blancas y otras negras, se forma un rectángulo de $3\times7$. Demostrar que siempre hay cuatro fichas del mismo color situadas en los vértices de un rectángulo.

Problema

Pichoneras de nacionalidad, edad y sexo

Enviado por jmd el 19 de Diciembre de 2011 - 21:27.

En una reunión hay 201 personas de 5 nacionalidades diferentes. Se sabe que, en cada grupo de 6, al menos dos tienen la misma edad. Demostrar que hay al menos 5 personas del mismo país, de la misma edad y del mismo sexo.

Problema

Coloreo de triángulos con fichas

Enviado por jmd el 10 de Diciembre de 2011 - 21:17.

Tres fichas $A, B, C$ están situadas una en cada vértice de un triángulo equilátero de lado $n$. Se ha dividido el triángulo en triangulitos equiláteros de lado 1, tal como muestra la figura en el caso $n = 3$.

Inicialmente todas las líneas de la figura están pintadas de azul. Las fichas se desplazan por las líneas, pintando de rojo su trayectoria, de acuerdo con las dos reglas siguientes:

Problema

Método para distribuir ceros y unos en un tablero

Enviado por jmd el 10 de Diciembre de 2011 - 21:13.

Tenemos un tablero cuadriculado de $k^2 - k + 1$ filas y $k^2 - k + 1$ columnas, donde $k = p + 1$ y $p$ es un número primo. Para cada primo $p$, dé un método para distribuir números entre 0 y 1, un número en cada casilla del tablero, de modo que en cada fila haya exactamente $k$ números $0$ en cada columna haya exactamente $k$ números $0$ y además no haya ningún rectángulo de lados paralelos a los lados del tablero con números 0 en sus cuatro vértices.

 

Problema

Cubo formado por 1996 cubos

Enviado por jmd el 10 de Diciembre de 2011 - 21:09.

Sea $n$ un número natural. Un cubo de arista $n$ puede ser dividido en $1996$ cubos cuyas aristas son también números naturales. Determine el menor valor posible de $n$.

Problema

Dominio eficiente de un tablero

Enviado por jmd el 10 de Diciembre de 2011 - 15:36.

En un tablero de $m\times m$ casillas se colocan fichas. Cada ficha colocada en el tablero "domina" todas las casillas de la fila (--), la columna (|) y la diagonal (\), a la que pertenece. Determine el menor número de fichas que deben colocarse para que queden "dominadas" todas las casillas del tablero. Nota: la ficha no "domina" la diagonal (/).

Problema

Tablero lampareado

Enviado por jmd el 10 de Diciembre de 2011 - 14:14.

En cada casilla de un tablero $n\times n$ hay una lámpara. Al ser tocada una lámpara, cambian de estado ella misma y todas las lámparas situadas en la fila y la columna que ella determina (las que están encendidas se apagan y las apagadas se encienden). Inicialmente todas están apagadas. Demostrar que siempre es posible, con una sucesión adecuada de toques, lograr que todo el tablero quede encendido y encontrar, en función de $n$, el número mínimo de toques para que se enciendan todas las lámparas.

Problema

Combinatoria con números de 3 cifras distintas elegidas de entre 5

Enviado por jmd el 9 de Diciembre de 2011 - 22:34.

Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.