Problemas - Combinatoria

Problema

Cubo formado por 1996 cubos

Enviado por jmd el 10 de Diciembre de 2011 - 20:09.

Sea $n$ un número natural. Un cubo de arista $n$ puede ser dividido en $1996$ cubos cuyas aristas son también números naturales. Determine el menor valor posible de $n$.

Problema

Dominio eficiente de un tablero

Enviado por jmd el 10 de Diciembre de 2011 - 14:36.

En un tablero de $m\times m$ casillas se colocan fichas. Cada ficha colocada en el tablero "domina" todas las casillas de la fila (--), la columna (|) y la diagonal (\), a la que pertenece. Determine el menor número de fichas que deben colocarse para que queden "dominadas" todas las casillas del tablero. Nota: la ficha no "domina" la diagonal (/).

Problema

Tablero lampareado

Enviado por jmd el 10 de Diciembre de 2011 - 13:14.

En cada casilla de un tablero $n\times n$ hay una lámpara. Al ser tocada una lámpara, cambian de estado ella misma y todas las lámparas situadas en la fila y la columna que ella determina (las que están encendidas se apagan y las apagadas se encienden). Inicialmente todas están apagadas. Demostrar que siempre es posible, con una sucesión adecuada de toques, lograr que todo el tablero quede encendido y encontrar, en función de $n$, el número mínimo de toques para que se enciendan todas las lámparas.

Problema

Combinatoria con números de 3 cifras distintas elegidas de entre 5

Enviado por jmd el 9 de Diciembre de 2011 - 21:34.

Encontrar un número $N$ de cinco cifras diferentes y no nulas, que sea igual a la suma de todos los números de tres cifras distintas que se pueden formar con las cinco cifras de $N$.

Problema

Sumas de 14 más menos unos

Enviado por jmd el 9 de Diciembre de 2011 - 21:29.

A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?

Problema

Recorridos en un tablero

Enviado por jmd el 9 de Diciembre de 2011 - 18:03.

Sean $A$ y $B$ vértices opuestos de un tablero cuadriculado de $n$ por $n$ casillas ($n\geq 1$), a cada una de las cuales se añade su diagonal de dirección $AB$, formándose así $2n^2$ triángulos iguales. Se mueve una ficha recorriendo un camino que va desde $A$ hasta $B$ formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.

Problema

IMO 2007 (PROBLEMA 6)

Enviado por cuauhtemoc el 1 de Diciembre de 2011 - 17:14.

Sea un entero positivo.  Se considera

Problema

Triangulos de area 1 en una reticula de 4x4!!!

Enviado por cuauhtemoc el 28 de Noviembre de 2011 - 17:55.

La siguiente reticula de 4x4 esta formada por cuadritos de lado igual a 1; se quiere dibujar un triangulo de area 1 de tal forma que sus vertices sean puntos de la reticula ¿cuantas formas hay de hacer esto?

Problema

CONGRESO INTERNACIONAL DE CIENTIFICOS!!!

Enviado por cuauhtemoc el 25 de Noviembre de 2011 - 18:22.

En un congreso internacional se reunene n cientificos de 6 paises.Durante el congreso los cientificos se dividen en 4 secciones de tal manera que dentro de cualquier grupo de 6 participantes de la misma seccion siempre hay dos cientificos de la misma edad. Encuentra el minimo numero n para el cual, bajo las condiciones mencionadas arriba, se pueda asegurar que existen 3 cientificos de una misma seccion que tienen la misma edad y pertenecen el mismo pais.

Problema

Mesas circulares!

Enviado por cuauhtemoc el 12 de Noviembre de 2011 - 18:45.

Hay 3 equipos, cada uno de ellos con 3 personas. Se quieren  sentar alrededor de una mesa redonda con sillas numeradas del 1 al 9. ¿De cuantas formas se pueden sentar las 9 personas en las sillas, de tal manera que cualesquiera dos personas consecutivas del mismo equipo esten separados entre si por la misma cantidad de sillas?