Problemas - Combinatoria

Problema

Sumas de 14 más menos unos

Enviado por jmd el 9 de Diciembre de 2011 - 22:29.

A cada vértice de un cubo se asigna el valor de +1 o -1, y a cada cara el producto de los valores asignados a cada vértice. ¿Qué valores puede tomar la suma de los 14 números así obtenidos?

Problema

Recorridos en un tablero

Enviado por jmd el 9 de Diciembre de 2011 - 19:03.

Sean $A$ y $B$ vértices opuestos de un tablero cuadriculado de $n$ por $n$ casillas ($n\geq 1$), a cada una de las cuales se añade su diagonal de dirección $AB$, formándose así $2n^2$ triángulos iguales. Se mueve una ficha recorriendo un camino que va desde $A$ hasta $B$ formado por segmentos del tablero, y se coloca, cada vez que se recorre, una semilla en cada uno de los triángulos que admite ese segmento como lado.

Problema

IMO 2007 (PROBLEMA 6)

Enviado por cuauhtemoc el 1 de Diciembre de 2011 - 18:14.

Sea un entero positivo.  Se considera

Problema

Triangulos de area 1 en una reticula de 4x4!!!

Enviado por cuauhtemoc el 28 de Noviembre de 2011 - 18:55.

La siguiente reticula de 4x4 esta formada por cuadritos de lado igual a 1; se quiere dibujar un triangulo de area 1 de tal forma que sus vertices sean puntos de la reticula ¿cuantas formas hay de hacer esto?

Problema

CONGRESO INTERNACIONAL DE CIENTIFICOS!!!

Enviado por cuauhtemoc el 25 de Noviembre de 2011 - 19:22.

En un congreso internacional se reunene n cientificos de 6 paises.Durante el congreso los cientificos se dividen en 4 secciones de tal manera que dentro de cualquier grupo de 6 participantes de la misma seccion siempre hay dos cientificos de la misma edad. Encuentra el minimo numero n para el cual, bajo las condiciones mencionadas arriba, se pueda asegurar que existen 3 cientificos de una misma seccion que tienen la misma edad y pertenecen el mismo pais.

Problema

Mesas circulares!

Enviado por cuauhtemoc el 12 de Noviembre de 2011 - 19:45.

Hay 3 equipos, cada uno de ellos con 3 personas. Se quieren  sentar alrededor de una mesa redonda con sillas numeradas del 1 al 9. ¿De cuantas formas se pueden sentar las 9 personas en las sillas, de tal manera que cualesquiera dos personas consecutivas del mismo equipo esten separados entre si por la misma cantidad de sillas?

Problema

Problema de la X ONMAS

Enviado por cuauhtemoc el 12 de Noviembre de 2011 - 19:28.

Utilizando los números 1,2,3,4,5,6,7,8,9 se quieren armar conjuntos que tengan dos o mas de esos números, sin repetición, de modo que si se multiplican todos los números del conjunto, el resultado que se obtiene es múltiplo de 4 pero no es múltiplo de 8.

¿Cuántos de estos conjuntos se pueden armar ?

Problema

Problema 2 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 11:23.

Sea $S$ un conjunto finito de dos o más puntos del plano. En $S$ no hay tres puntos colineales. Un remolino es un proceso que empieza con una recta $l$ que pasa por un único punto $P$ de $S$. Se rota $l$ en el sentido de las manecillas del reloj con centro en $P$ hasta que la recta encuentre por primera vez otro punto de $S$ al cual llamaremos $Q$. Con $Q$ como nuevo centro se sigue rotando la recta en el sentido de las manecillas del reloj hasta que la recta encuentre otro punto de $S$. Este proceso continúa indefinidamente.

Problema

Problema 1(IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 11:21.

Para cualquier conjunto  de cuatro enteros positivos distintos se denota la suma  con 

Problema

Problema 4 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 10:15.

 Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.