Problemas - Geometría

Problema

P5 Concurrencia de 2 círculos y 1 segmento

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:08.

Sean $ABC$ un triángulo acutángulo, $\Gamma$ su circuncírculo y $O$ su circuncentro. Sea $F$ el punto en $AC$ tal que $\angle COF = \angle ACB$, donde $F$ y $B$ están de lados opuestos respecto a $CO$. La recta $FO$ corta a $BC$ en $G$. La paralela a $BC$ por $A$ interseca a $\Gamma$ de nuevo en $M$. Las rectas $MG$ y $CO$ se cortan en $K$. Demuestra que los circuncírculos de los triángulos $BGK$ y $AOK$ concurren en $AB$.

Problema

P3 Regresa la Geo a la OMM

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 08:53.

Sea $ABCD$ un cuadrilátero convexo. Si $M, N, K$ son los puntos medios de los segmentos $AB$, $BC$ y $CD$ respectivamente, y además existe un punto $P$ dentro del cuadrilátero $ABCD$ tal que, $\angle BPN = \angle PAD$ y $\angle CPN = \angle PDA$. Demuestra que $AB \cdot CD$ = $4PM \cdot PK$

Problema

3.- Ortocentro como Punto Medio

Enviado por Samuel Elias el 1 de Noviembre de 2023 - 17:31.

Sean $ABC$ un triángulo acutángulo, $H$ su ortocentro y $M$ el punto medio de $BC$. La perpendicular a $MH$ por $H$ corta a $AB$ en $L$ y a $AC$ en $N$. Demuestra que $LH=HN$.

NOTA: El ortocentro es la intersección de las alturas del triáungulo. 

Un triángulo acutángulo es aquel que tiene sus 3 ángulos agudos.

Problema

6.- 480°???

Enviado por Samuel Elias el 17 de Julio de 2023 - 19:17.

Sea $ABC$ un triángulo equilátero. Sean $A_1$, $B_1$ y $C_1$ puntos interiores de $ABC$ tales que $BA_1$ = $A_1C$, $CB_1$ = $B_1A$, $AC_1$ = $C_1B$ y <$BA_1C$ + <$CB_1A$ + <$AC_1B$ = 480°. 

Las rectas $BC_1$ y $CB_1$ se cortan en $A_2$, las rectas $CA_1$ y $AC_1$ se cortan en $B_2$, y las rectas $AB_1$ y $BA_1$ se cortan en $C_2$. 

Demuestra que si el triángulo $A_1B_1C_1$ es escaleno, entonces los tres circuncírculos de los triángulos $AA_1A_2$, $BB_1B_2$ y $CC_1C_2$ pasan todos por dos puntos comunes. 

NOTA: un triángulo escaleno tiene sus 3 longitudes de lados distintos.

Problema

2.- Revive la geo con una concurrencia

Enviado por Samuel Elias el 17 de Julio de 2023 - 18:13.

Sea $ABC$ un triángulo acutángulo con $AB < AC$. Sea Ω el circuncírculo de ABC. Sea S el punto medio del arco $CB$ de Ω que contiene a A. La perpendicular por $A$ por $BC$ corta al segmento $BS$ en $D$ y a Ω de nuevo en E ≠ A. La paralela a $BC$ por $D$ corta a la recta $BE$ en $L$. Sea ω el circuncírculo del triángulo $BDL$. Las circunferencias ω y Ω se cortan de nuevo en P ≠ B. Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior del ángulo <$BAC$.

Problema

P8. Hexágonos de palitos con áreas iguales

Enviado por jesus el 26 de Junio de 2023 - 15:01.

Se tienen nueve palitos de madera: tres azules de longitud $a$ cada uno, tres rojos de longitud $r$ cada uno y tres verdes de longitud $v$ cada uno, tales que es posible formar un triángulo $T$ con palitos de colores distintos.

Dana puede formar dos arreglos, comenzando con $T$ y utilizando los otros seis palitos para prolongar los lados de $T$, como se muestra en la figura. De esta manera se pueden formar dos hexágonos cuyos vértices son los extremos de dichos seis palitos. Demuestra que ambos hexágonos tienen la misma área.

Problema

P2. Matilda dibuja cuadriláteros

Enviado por jesus el 19 de Junio de 2023 - 17:51.

Matilda dibuja 12 cuadriláteros. El primer cuadrilátero que dibuja es un rectángulo de lados enteros y 7 veces más ancho que alto. Cada vez que termina de dibujar un cuadrilátero, une los puntos medios de cada pareja de lados consecutivos con segmentos de recta para así obtener el siguiente cuadrilátero. Se sabe que el último cuadrilátero que dibuja Matilda es el primero en tener área menor a 1. ¿Cuál es el área máxima posible del primer cuadrilátero?

Problema

6.- Punto ideal de semejanza

Enviado por Samuel Elias el 21 de Noviembre de 2022 - 13:57.

Encuentra todos los $n \geq 3$, tales que existe un polígon convexo de $n$ lados $A_1A_2 \dots A_n$, que tenga las siguientes características:

  • todos los ángulos internos de $A_1A_2 \dots A_n$ son iguales
  • no todos los lados de $A_1A_2 \dots A_n$ son iguales
  • existe un triángulo $T$ y un punto $O$ en el interior de $A_1A_2 \dots A_n$ tal que los $n$ triángulos $OA_1A_2$, $OA_2A_3$, $\dots$, $OA_{n-1}A_n$ son todos semejantes a $T$ 

NOTAS:

Problema

Isósceles en 2 circunferencias de mismo radio

Enviado por Samuel Elias el 24 de Octubre de 2022 - 07:51.

Sean α y β dos circunferencias con el mismo radio. Dichas circunferencias se intersectan en puntos P y Q. Sea X un punto en α. La recta QX intersecta a β en un punto Z, de manera que Z queda entre X y Q. Demuestra que PX=PZ.

Problema

Paralelogramo con solo 3 vértices en una circunferencia

Enviado por Samuel Elias el 24 de Octubre de 2022 - 07:42.

Sea ABCD un paralelogramo. Sean K y L las intersecciones del circuncírculo de ABC con los lados AD y CD respectivamente. Sea M el punto medio del arco KL que no contiene a B. Demuestra que DM es perpendicular a AC.