Problemas - Geometría
Problemas del segundo dia del nacional 12 ONMAS
Diferencia de áreas de flores en octágono
A partir de un octágono regular de lado 10 cm, Anita dibuja dos flores como se muestran a continuación:
¿Cuál es la diferencia entre las áreas de las flores?

Encontrar ángulo dada una bisectriz
En un rectángulo $ABCD$, $F$ es el punto medio del lado $CD$ y $E$ es un punto del lado $BC$ tal que $AF$ es bisectriz del ángulo $EAD$. Si el ángulo $AEF$ mide 68 grados ¿cuál es la medida del ángulo $BAE$?
Los problemas del nacional de la 12 ONMAS
Área de pentágono
Por los vértices D y A del cuadrado ABCD de lado 5 se trazan, respectivamente, los segmentos paralelos DE y AF hacia afuera del cuadrado, de tal manera DE mide 4 y es perpendicular a EF. Encuentra el área del pentágono ABCEF.
Demostrar perpendicular
Sean $ABC$ un triángulo rectángulo y $M$ el punto medio de la hipotenusa $BC$. Sus catetos cumplen que $CA$ es menor que $AB$. Se coloca un punto $D$ sobre $AB$ de manera que $CA = AD$. Finalmente, sea $E$ el punto común de $AM$ y $CD$. Si $F$ es un punto sobre $BC$ tal que $EF$ es paralela a BC $AC$, demostrar que $AM$ es perpendicular a $FD$.
Tangentes a circunferencia desde el centro de otra
Considere las circunferencias $a$ y $b$ de centros $A$ y $B$ respectivamente. Desde el centro $A$ se trazan las tangentes a $b$ y éstas cortan a $a$ en los puntos $P$ y $Q$. Desde el centro $B$ se trazan las tangentes a $a$ que cortan a $b$ en $R$ y $S$. Demostrar que $PQRS$ es un rectángulo.
Círculo de diámetro la base de un triángulo
Sea $ABC$ un triángulo tal que la circunferencia $S$ de diámetro $BC$ pasa por el punto medio $M$ de $AB$. Sea $N$ un punto sobre $S$ de manera que $MN$ es diámetro de $S$. Probar que el área del triángulo $ABC$ entre el área del triángulo $MNC$ es 2.
Razón de áreas
En el rectángulo $ABCD$, los puntos $P, Q, R, S$, uno en cada lado, dividen el lado donde están en razón 3:2. ¿Cuál es el cociente del área del paralelogramo $PQRS$ entre el área de la región del rectángulo que queda afuera del paralelogramo? (N del E: en el examen se dio la figura.)
Demostrar paralelogramo
Sean $ABCD$ un paralelogramo, y $P, Q, R, S$ puntos exteriores a él. $M_1$ y $M_2$ son puntos medios de $PA$ y $AQ$, respectivamente, y $G_1$ la intersección de $QM_1$ y $PM_2$. ($G_1$ es el gravicentro del triángulo $PAQ$). De la misma manera se localizan los puntos $G_2, G_3, G_4$ en los triángulos $QRB, RSC$ y $SPD$, respectivamente. Demuestre que $G_1G_2G_3G_4$ es un paralelogramo.