Geometría

Problema

P6. IMO 2014 - Coloreado de rectas en posición general

Enviado por jesus el 9 de Julio de 2014 - 11:30.

Un conjunto de rectas en el plano está en posición general si no hay dos que sean paralelas ni tres que pasen por el mismo punto. Un conjunto de rectas en posición general separa el plano en regiones, algunas de las cuales tienen área finita; a estas las llamamos sus regiones finitas.

Demostrar que para cada $n$ suficientemente grande, en cualquier conjunto de $n$ rectas en posición general es posible colorear de azul al menos $\sqrt{n}$ de ellas de tal manera que ninguna de sus regiones finitas tenga todos los lados de su frontera azules.

Problema

P4. IMO 2014 - Concurrencia de dos rectas y una circunferencia

Enviado por jesus el 9 de Julio de 2014 - 11:23.

Los puntos $P$ y $Q$ están en el lado $BC$ del triángulo acutángulo $ABC$ de modo que $\angle PAB = \angle BCA$ y $\angle CAQ = \angle ABC$. Los puntos $M$ y $N$ están en las rectas $AP$ y $AQ$, respectivamente, de modo que $P$ es el punto medio de $AM$, y $Q$ es el punto medio de $AN$. Demostrar que las rectas $BM$ y $CN$ se cortan en la circunferencia circunscrita del triángulo $ABC$

Problema

P3. IMO 2014 - Demuestra que es tangente

Enviado por jesus el 9 de Julio de 2014 - 11:17.

En el cuadrilátero convexo $ABCD$, se tiene $\angle ABC = \angle CDA = 90^{\circ}$. La perpendicular a $BD$ desde $A$ corta a $BD$ en el punto $H$. Los puntos $S$ y $T$ están en los lados $AB$ y $AD$, respectivamente, y son tales que $H$ está dentro del triángulo $SCT$ y
$$\angle CHS - \angle CSB = 90^{\circ},\quad \angle THC - \angle DTC = 90^{\circ}$$.
Demostrar que la recta $BD$ es tangente a la circunferencia circunscrita del triángulo $TSH$.

Problema

Equiláteros sobre un segmento

Enviado por jmd el 16 de Junio de 2014 - 12:40.

Se marcan los puntos A, B, C, D sobre una recta, en ese orden, con AB y CD mayores que BC. Se construyen triángulos equiláteros APB, BCQ y CDR, con P, Q y R del mismo lado respecto a AD. Si el ángulo PQR mide 120 grados, pruebe que
$$\frac{1}{AB}+\frac{1}{CD}=\frac{1}{BC}$$

Problema

Así o más congruentes

Enviado por Paola Ramírez el 13 de Junio de 2014 - 04:17.

Sea  un trapecio $ABCD$ de bases $AB$  y $CD$ , inscrito en una circunferencia de radio $O$. Sea $P$ la intersección de las rectas $AD$ y $BC$ . Una circunferencia por $O$ y $P$  corta a los segmentos $BC$ y $AD$ en puntos interiores $F$ y $G$ respectivamente. Muestre que $BF=DG$ .

Problema

Un problema guiado --de geometría

Enviado por jmd el 1 de Junio de 2014 - 07:58.

2.G. Sean ABC un triángulo isósceles con AB=AC, y P en AB y Q en AC puntostales que AP=CQ. Sea O la intersección de las mediatrices de PQ y AC.

a) Demostrar que APO y CQO son triángulos congruentes.
b) Demostrar que APOQ es un cuadrilátero cíclico.
c) Demostrar que AO es bisectriz del ángulo BAC.


(Nota: Para el inciso b puedes usar el resultado del a (sin demostración); para el cpuedes usar los resultados de a y b.)

Problema

Configuración con acutángulo isósceles

Enviado por jmd el 25 de Mayo de 2014 - 11:16.

2.5. Sea ABC un triángulo acutángulo isósceles con AC=BC. M y N son los puntos medios de AC y BC, respectivamente. La altura desde A corta a la prolongación de MN en X y la altura desde B corta a la prolongación de MN en Y. Z es la intersección de AY con BX. Además, sucede que los triángulos ABC y XYZ son semejantes. Determina la razón $\frac{AC}{AB}$.

Problema

Ángulo postgiro

Enviado por jmd el 25 de Mayo de 2014 - 11:10.

2.2. Sea ABCD un cuadrilátero que cumple: AB=AD,AC=BC+CD y los ángulos ABC y CDA suman 180 grados. El triángulo ABC se gira con centro en A formando el triángulo AB'C', como se muestra en la figura, hasta que el punto B' coincida con D, formándose el triángulo ADC'. Encuentra la medida del ángulo ACC'.

Problema

Isósceles inscrito en acutángulo

Enviado por jmd el 24 de Mayo de 2014 - 21:40.

1.6. Sean ABC un triángulo acutángulo, H su ortocentro y M el punto medio de BC. La perpendicular a MH por H corta a AB en L y a AC en N. Demuestra que LH=HN.

Problema

Razón de áreas en un hexágono

Enviado por jmd el 24 de Mayo de 2014 - 21:35.

1.3.  Sean ABCDEF un hexágono regular y M el punto medio del lado AB. Si O es el punto donde se cruzan los segmentos AD y ME ¿qué parte del área del hexágono es el área del triángulo OMD?

Distribuir contenido