Geometría

Problema

Producto de diagonales en un polígono regular

Enviado por jesus el 7 de Mayo de 2009 - 12:36.

Sea $A_1, A_2, \dots, A_n$ los $ n $ vértices de un polígono regular con circunferencia circuncrita de radio $R$, Demuestra que:

Problema

Isósceles semejantes sobre un triángulo

Enviado por jesus el 4 de Mayo de 2009 - 22:00.

Consideremos $A'$, $B'$ y $C'$ tres puntos en el exterior del triángulo $ ABC $, de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son todos isósceles semejantes y de bases BC, CA y AB respectivamente, Demuestra que $AA'$, $BB'$ y $CC'$ concurren.

Problema

Equiláteros en los lados de un triángulo

Enviado por jesus el 4 de Mayo de 2009 - 21:49.

Este es un problema con la misma figura del triángulo de napoleón.

Consideremos los puntos $A'$,  $B'$ y $C'$ puntos fuera del triángulos $ ABC $ de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son equiláteros. Demuestra que $AA'$, $BB'$ y $CC'$ concurren y son de la misma longitud.

Problema

OMM 2008, Problema 6

Enviado por jesus el 4 de Mayo de 2009 - 21:03.

Las bisectrices internas de los ángulos A, B y C de un triángulo ABC concurren en I y cortan
al circuncírculo de ABC en L, M y N, respectivamente. La circunferencia de diámetro IL,
corta al lado BC, en D y E; la circunferencia de diámetro IM corta al lado CA en F y G;
la circunferencia de diámetro IN corta al lado AB en H y J. Muestra que D, E, F, G, H,
J están sobre una misma circunferencia.

Problema

IMO 2008, Problema 1

Enviado por Luis Brandon el 4 de Mayo de 2009 - 16:51.

Un triangulo $ ABC $  tiene ortocentro $ H $. La circunferencia con centro en el punto medio de $ BC $, que pasa por $ H $, corta a la recta $ BC $ en $A_1$y$A_2$, de manera similar se definen los puntos $B_1,B_2$ en la recta $CA$ y $C_1,C_2$ en la recta $AB$. Demuestra que los puntos $A_1, A_2, B_1, B_2, C_1, C_2$ estan en una misma circunferencia.

Problema

Problema 8 Geometrense

Enviado por Luis Brandon el 28 de Abril de 2009 - 10:33.

Sean ABC un triángulo y AP, AQ las tangentes desde A a la circunferencia de diámetro BC (P y Q los puntos de tangencia). Muestra que el ortocentro H de ABC está sobre PQ.

Problema

Perpendicular si y sólo si el triángulo es isósceles

Enviado por Luis Brandon el 27 de Abril de 2009 - 21:28.

Sea ABC un triángulo de circuncentro O, sea M el punto medio de AB y E el gravicentro del triángulo AMC. Demostrar que OE y CM son perpendiculares si y sólo si AB=AC

Problema

Perpendiculares

Enviado por Luis Brandon el 12 de Abril de 2009 - 12:14.

Para un triángulo $ ABC $, toma los puntos $ M $ y $ N $ en las extensiones de AB y CB, respectivamente de tal manera que $ M $ y $ N $ estén más cerca de $ B $ que de $ A $ y $ C $, y que $ AM=CN=s $ donde $ s $ denota el semiperímetro. Sea $ K$ el punto diametralmente opuesto a $ B $ e $ I $ el incentro del triángulo $ ABC $.

Problema

Equilátero inscrito en equilátero

Enviado por jmd el 1 de Abril de 2009 - 16:20.

Inscribir un triángulo equilátero en un triángulo equilátero $ ABC $, de tal manera que cada lado del inscrito sea perpendicular a un lado del triángulo $ ABC $. (Describir el procedimiento de construcción.)

Problema

Problema 6G, Ciudades 2009

Enviado por jmd el 1 de Abril de 2009 - 14:35.

En  la figura el segmento $ BC $  une  los centros de los círculos tangentes, $AB$ es perpendicular a $BC, BC =8$ , y $AC =10$. Calcular el área de cada círculo.

Distribuir contenido