Problemas - Lógica

Problema

Problema 3 OMM 2003

Enviado por jose el 30 de Enero de 2009 - 22:07.

Problema 3. En una fiesta hay el mismo número n de muchachos que de muchachas. Supón que a cada muchacha le gustan a muchachos y que a cada muchacho le gustan b muchachas. ¿Para qué valores de $a$ y $b$ es correcto afirmar que forzosamente hay un muchacho y una muchacha que se gustan mutuamente?
 

Problema

El problema elemental más difícil jamás inventado

Enviado por jmd el 15 de Enero de 2009 - 22:43.

Encontrar una solución al siguiente acertijo, en el que las distintas letras representan los dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Una solución consiste en una correspondencia biunívoca entre letras y dígitos que sea compatible con la suma.

Problema

Máscaras de ángeles y de diablos

Enviado por jesus el 29 de Septiembre de 2008 - 19:50.

 

 

Este problema podría tener mal los datos. Hay que revisarlo

 

 

Se han colocado cuatro estudiantes en las esquinas de un cuarto. Se le ha colocado una máscara a cada uno. Cada estudiante es capáz de ver la máscara de los otros tres escépto la propia. Se les ha comento a los estudiantes que las mascaras que les pusieron provienen de un costal que sólo cuenta de 7 máscaras; 4 de ángeles y 3 de diablos.

Problema

Los estudiantes con sombrero - Enunciado

Enviado por jesus el 29 de Junio de 2008 - 23:29.

Se han elegido tres estudiantes muy intelegentes para realizar un experimento: José, Valentina y Jesús. Los han acomadado en una fila: al frente, Jesús; atrás de él, Valentina; y al último, José. Les han hecho saber que de un grupo de dos sombreros rojos y tres verdes se elgió uno para cada uno. Como los sombreros fueron puestos al momento de estar formados José puede ver los colores de los sombreros de Valentina y Jesús, pero no el suyo. Valentina puede ver el color del sombrero de Jesús pero al igual que José, tampoco ve el suyo. Por último, Jesús no ve el color del sombrero de nadie.

Problema

ONMAS 2008 Nivel 1, Problema4

Enviado por jesus el 9 de Junio de 2008 - 18:30.

Francisco olvidó la clave de su tarjeta de banco y quiere realizar un retiro. Apenas recuerda que su clave contiene 4 dígitos y cumplen lo siguiente

  • ninguno de los dígitos es 0 ni es mayor que 5
  • no hay dígitos repetidos
  • no hay dos dígitos adyacentes que sean números consecutivos
  • la clave es un múltiplo de 4

Por ejemplo, el código 5413 no cumple porque el 4 y el 5 son cifras consecutivas, y el código 1135 no cumple porque se repite el 1. Francisco, que tiene muy mala suerte, probó todos los casos posibles y funcionó hasta que probó la última posibilidad. ¿Cuántos casos probó Francisco?

Problema

Retroducción en un problema de números

Enviado por jmd el 27 de Abril de 2007 - 23:57.

Al estudiante A se le da a conocer un número a y la información de que a es el producto xy de dos enteros positivos. Al estudiante B se le da a conocer un número b y la información de que es la suma x+y de los mismos números cuyo producto es el número dado a A. Además, a ambos se les hace saber que x, y son números enteros mayores que 1 y su suma es menor que 100. Después de que los estudiantes obtienen esta información (y después de haberla meditado un rato) tiene lugar el siguiente diálogo: