Problemas - Teoría de números

Problema

Suma de divisores mínima

Encuentra el número mayor que 2007 tal que la suma de todos sus divisores sea la mínima.

 

 
Problema

Múltiplos de 6 y de 7... y potencia de 11

Paz hace una lista con todos los números del 1 al 2006. Encierra en un círculo todos los números que son múltiplos de 6. Luego, encierra en un círculo todos los números que son múltiplos de 7. Finalmente, multiplica todos los números que encerró. ¿Cuál es la mayor potencia de 11 que divide exactamente al resultado de esta multiplicación?

 

 
Problema

Origen de un número

Para cualquier número natural $n$ se dice que su origen se calcula multiplicando sus cifras, después las cifras del resultado, y así sucesivamente hasta llegar a un número de una sola cifra. Por ejemplo, el origen del 149 es el 8, ya que $149\rightarrow36\rightarrow 18\rightarrow 8$; y el origen del 5486 es el 0, ya que $5486\rightarrow 960\rightarrow 0$. Encuentra la suma de todos los números de dos o más cifras distintas, tales que su origen sea un número impar.

 

 
Problema

Mayor divisor, 7 veces el menor

Encontrar todos los números naturales $n$ tales que sus divisores, distintos de $1$ y $n$, cumplen que el más grande es 7 veces el más pequeño.

 

 
Problema

Cuadrados perfectos de tres dígitos consecutivos

Encuentra todos los números de tres cifras que sean cuadrados perfectos y que use cifras consecutivas. Por ejemplo 123, 132, 213, 231,312, 321 son números que usan las cifras consecutivas y 4 es un ejemplo de cuadrado perfecto.

 
Problema

El odómetro chafa

 

El odómetro (medidor de distancias recorridas) de un carro chafa siempre brinca de 3 a 5, saltándose el 4, sin importar la posición. Por ejemplo, después de viajar un kilómetro cambió de 000039 a 000050. Si el odómetro marca 002005, ¿cuántos kilómetros ha viajado en realidad el carro chafa?

 
Problema

Años superolímpicos

Cuando la edición $N$ de la ONMAS se realiza en un año divisible entre $N$, diremos que es un año superolímpico. Por ejemplo el año 2005 es superolímpico porque se realiza la edición 5 de la ONMAS y 2005 es divisible entre 5. Determina todos los años superolímpicos, sabiendo que la ONMAS se realiza anualmente a partir de 2001 y suponiendo que se seguirá realizando cada año.

 

 
Problema

Numeros aluxes

Un entero positivo $n$ es aluxe si el producto de los digitos de $n$ es igual al producto de los digitos de $n+1$. ¿Cuántos enteros aluxes hay menores o iguales a 2011 y mayores o iguales a 1?

 
Problema

Números racionales!!!

Demuestra que la suma de las raíces cuadradas de 2 y 3 suman un número irracional. Esto es, $\sqrt{2} + \sqrt{3}$ es irracional.

 
Problema

Divisibilidad en un polinomio cúbico

Sean $m$ y $n$ números enteros tales que el polinomio $P(x)=x^3+mx+n$ tiene la siguiente propiedad: si $x$ y $y$ son enteros y 107 divide a $P(x)-P(y)$, entonces 107 divide a $x-y$. Demuestre que divide a 107 divide a $m$.