Números

Problema

Función de un primo con 6 divisores

Enviado por jmd el 10 de Septiembre de 2010 - 11:28.

Encontrar todos los números primos $p$ para los cuales el número $p^2+11$ tiene exactamente 6 divisores positivos (el 1 y el número incluidos).

Problema

Soluciones enteras bajo condición de divisibilidad

Enviado por jmd el 10 de Septiembre de 2010 - 11:25.

 Encontrar, con prueba, todas las parejas $(a,b)$ de enteros positivos tales que $ab^2+b+7$ divide a $a^2b+a+b$

Problema

Cuadrado perfecto de cuatro cifras

Enviado por jmd el 25 de Agosto de 2010 - 17:33.

Sea $m$ un cuadrado perfecto de cuatro cifras menores que 9. Sumando una unidad a cada una de las cifras de $m$ se forma otro cuadrado perfecto. Encontrar $m$.

Problema

La factorización prima es única

Enviado por jmd el 13 de Agosto de 2010 - 17:36.

Encontrar todos los pares $(x,y)$ de enteros que satisfacen la ecuación $2^x+1=y^2$

Problema

Diez consecutivos son divisores --pero no 11

Enviado por jmd el 31 de Julio de 2010 - 07:09.

Encuentra todos los enteros positivos $N$ con la siguiente propiedad: entre todos los divisores positivos de $N$, hay 10 números consecutivos, pero no 11.

Problema

La arista es el MCD de sus vértices

Enviado por jmd el 31 de Julio de 2010 - 06:50.

En los vértices de un cubo están escritos 8 enteros positivos distintos, uno
en cada vértice. Y en cada una de las aristas está escrito el máximo común
divisor de los números que están en los 2 vértices que la forman. Sean $A$ la suma de los números escritos en las aristas y $V$ la suma de los números escritos en los vértices.

  • (a) Muestra que $\frac{2}{3}A\leq V$.
  • (b) ¿Es posible que $A = V$?
Problema

Expresado como suma de potencias --de sus primeros dos divisores

Enviado por jmd el 31 de Julio de 2010 - 06:12.

Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.

Problema

Los parientes de un número son sus múltiplos

Enviado por jmd el 29 de Julio de 2010 - 08:17.

Sea $ab$ un número de dos dígitos. Un entero positivo $ n $ es “pariente” de $ab$ si:

  • El dígito de las unidades de $n$ también es $b$.
  • Los otros dígitos de $n$ son distintos de cero y suman $a$.

Por ejemplo, los parientes de 31 son 31, 121, 211 y 1111. Encuentra todos los números de dos dígitos que dividen a todos sus parientes .

Problema

Infinidad de enteros en sucesión de fracciones

Enviado por jmd el 29 de Julio de 2010 - 08:00.

Determina todas las parejas $(a,b)$ de enteros distintos de cero para las cuales es posible encontrar un entero positivo $x$ primo relativo con $b$ y un entero cualquiera $y$, tales que en la siguiente lista hay una infinidad de números enteros:
$$\frac{a+xy}{b},\frac{a+xy^2}{b^2},\frac{a+xy^3}{b^3},\ldots,\frac{a+xy^n}{b^n},\ldots$$

Problema

Ternas compatibles

Enviado por jmd el 24 de Julio de 2010 - 08:04.

Tres enteros distintos forman una terna compatible si alguno de ellos, digamos $ n $, cumple que cada uno de los otros dos es, o bien divisor, o bien múltiplo de $ n $. Para cada terna compatible de números entre 1 y 2002 se calcula la suma de los tres números de la terna. ¿Cuál es la mayor suma obtenida? ¿Cuáles son las ternas en las que se obtiene la suma máxima?

Distribuir contenido