Números

Problema

El seis de la ORO. (Paisanos)

Enviado por German Puga el 8 de Diciembre de 2017 - 23:45.

Un cambio para un número natural $n$ consiste en agregar una pareja de ceros entre dos dígitos o al final de la representación decimal de $n$. Un paisano de $n$ es un número que se puede obtener haciendo uno o más cambios en $n$. Por ejemplo 40041 y 44001 son paisanos de 441. (Nota: 441 no es paisano de 44100). Determina todos los números naturales $n$ para los cuales existe un número natural $m$ con la propiedad de que $n$ divide a $m$ y a todos los paisanos de $m$. 

Problema

Múltiplo de 7 con dígitos consecutivos

Enviado por German Puga el 13 de Diciembre de 2016 - 16:29.

Decimos que un número entero no-negativo $n$ contiene a otro número entero no-negativo $m$, si los dígitos de su expansión (o desarrollo) decimal aparecen en forma consecutiva en la expansión (o desarrollo) decimal de $n$.  Por ejemplo 2016 contiene a 2,0,1,6, 20, 16, 201 y 2016. Determina el mayor número entero $n$ que no contiene a ningún múltiplo de 7. 

Problema

Parejas Guerreras

Enviado por German Puga el 11 de Diciembre de 2016 - 20:57.

Una pareja de enteros positivos $m,n$ es guerrera si existen enteros positivos $a,b,c,d$ con $m=ab, n=cd$ y $a+b=c+d$. Por ejemplo, la pareja 8,9 es guerrera pues $8 = 4 \cdot 2 , 9=3 \cdot 3$ y $4+2=3+3$. Se colorean los enteros positivos de la siguiente manera: 

  • Empezamos coloreando el 3 y el 5.
  • Después , si algún entero positivo no está coloreado y este tiene una pareja guerrera que ya está coloreado, entonces lo coloreamos. 

Encuentra todos los enteros positivos que eventualmente se colorean.

Problema

Números norteños

Enviado por German Puga el 29 de Octubre de 2016 - 13:24.

Un entero positivo $N$ es norteño si para cada dígito $d >0$, existe un divisor de $N$ cuyo último dígito es $d$. ¿Cuántos números norteños menores que 2016 hay que tengan la menor cantidad posible de divisores?

Problema

Suma de cubos igual a 2016

Enviado por German Puga el 17 de Septiembre de 2016 - 15:33.

Determina si existen alguna terna de enteros no negativos, no necesariamente distintos, $(a,b,c)$ tales que:

$$a^3 + b^3 + c^3 =2016$$ 

Problema

$n$ y $n^2$ con misma terminación. Selectivo 2016

Enviado por Orlandocho el 28 de Agosto de 2016 - 12:59.

Encuentra todos los números naturales $n$ de tres dígitos que son iguales al número formado por los tres últimos dígitos de $n^2$.

Problema

Problema 4 - IMO 2016 - Conjunto de enteros fragantes

Enviado por jesus el 12 de Julio de 2016 - 21:42.

Un conjunto de números enteros positivos se llama fragante si tiene al menos dos elementos, y cada uno de sus elementos tiene algún factor primo en común con al menos uno de elementos restantes. Sea $P(n) = n^2 + n + 1$.  Determinar el menor número entero positivo $b$ para el cual existe algún número entero no negativo $a$ tal que el conjunto $$\{P(a+1), P(a+2), \dots,  P(a + b)\}$$ es fragante.

Problema

Problema 3 - IMO 2016 - Área de un polígono cíclico de coordenadas enteras.

Enviado por jesus el 11 de Julio de 2016 - 14:06.

Sea $P=A_1A_2 \dots A_k$ un polígono convexo en el plano. Los vértices $A_1, A_2, \dots, A_k $ tienen coordenadas enteras y están sobre un círculo. Sea $\mathcal{S}$ el área de $P$. Los cuadrados de las los lados de $P$ son todos divisibles por un entero dado $n$. Demuestra que $2\mathcal{S}$ es divisible por $n$,

Traducido del inglés.

Problema

Las monedas de Ingrid

Enviado por German Puga el 3 de Julio de 2016 - 12:52.
Ingrid donará $N$ monedas de oro en el año a dos fundaciones protectoras de animales, llamadas $A$ y $B$. Al principio todas las monedas las destinará a $A$. Cada día observa si la cantidad de monedas que tiene $A$ en ese momento es múltiplo de la cantidad de días transcurridos desde que inició la donación, de cumplirse eso, pasa una moneda de $A$ a $B$. El reparto termina cuando la cantidad de días transcurridos es más que la mitad de monedas que tenga $A$.
Problema

Números chidos

Enviado por German Puga el 3 de Junio de 2016 - 17:23.

Un número de tres cifras $abc$ es chido si:

  • Todas sus cifras son distintas y mayores a uno.
  • Las fracciones $ \frac{bc}{a}, \frac{ac}{b} $ y $ \frac{ba}{c}$ son enteros.

a) ¿Cuál es el número chido más grande? 

b) ¿Qué números chidos tienen la misma cifra en las centenas que el número encontrado en el inciso anterior?

Distribuir contenido