Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos: redactar un problema
Problema

Tercia de reales

Encuentra todas las ternas de reales $(a,b,c)$ tales que $$ a- \frac{1}{b} = b - \frac{1}{c} = c - \frac{1}{a}$$

 
Problema

Punto exterior a un cuadrado

Sea $ABCD$ un cuadrado. P un punto sobre la semicircunferencia de diámetro AB exterior al cuadrado. Sean M y N las intersecciones de PD y PC con AB, respectivamente. Demuestra que $MN^2 = AM \cdot BN$

 
Problema

encontrar ecuacion

hallar dos numeros pares consecutivos de tal forma que 1/5 del primero,mas 7/11 del segundo,menos 8,sea igual a 1/2 del segundo menos 1

 
Problema

Cuadritos unitarios distanciados

Considera un tablero de $n \times n$, con $n \geq 5$. Dos cuadritos unitarios se dice que son distanciados  si no se encuentran en el mismo renglón ni en renglones consecutivos y tampoco en la misma columna ni en columnas consecutivas. Se toman 3 rectángulos con vértices y lados  sobre los puntos y lineas del tablero de manera que si dos cuadritos unitarios pertencen a distintos rectángulos entonces son distanciados . ¿De cuántas maneras es posible hacer esto?

 
Problema

Cíclico dentro de un isóceles

Sea $ABC$ un triángulo con $AB=AC$ de gravicentro $G$. $M$ y $N$ los puntos medios de $AB$ y $AC$ respectivamente y $O$ el circuncentro del trángulo $BCN$. Muestra que $MBOG$ es un cuadrilátero cíclico.

 
Problema

Suma de cubos igual a 2016

Determina si existen alguna terna de enteros no negativos, no necesariamente distintos, $(a,b,c)$ tales que:

$$a^3 + b^3 + c^3 =2016$$ 

 
Problema

$n$ y $n^2$ con misma terminación. Selectivo 2016

Encuentra todos los números naturales $n$ de tres dígitos que son iguales al número formado por los tres últimos dígitos de $n^2$.

 
Problema

Geometría del Primer Selectivo 2016

Sea $ABCD$ un cuadrilátero cíclico y $E$ y $F$ puntos sobre la recta $AB$ pero fuera del segmento $AB$ con $A$ entre $E$ y $B$ y $B$ entre $A$ y $F$. Demuestra que si $\angle  BED = \angle AFC = \angle DAC$ entonces $EA=BF$.

 
Problema

Álgebra del Primer Selectivo 2016

Encuentra todas las parejas de enteros positivos $m$ y $n$ tales que $$(m^2+n)(m+n^2)=(m+n)^3.$$

 
Problema

Triángulos Tranquilos

Considera un tablero cuadrículado de manera regular cuya área es $N$. Al colocar un triángulo no degenerado dentro de él (que puede quedar en los bordes) decimos que es tranquilo, si cada vértice coincide con algún vértice de los cuadritos unitarios interiores, además si uno de sus lados es paralelo a algún lado del tablero. Supón que se han colocado $N+1$ triángulos tranquilos, muestra que hay dos con la misma área.