Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos: redactar un problema
Problema

Ecuaciones funcionales

Resolver las siguientes ecuaciones funcionales.

 

 

  1. Encontrar $p(x)$ de tal manera que $p(x+1)=p(x)+2x+1$.
  2. Encontrar $f(x)$ de tal manera que $f(x+1)=x^2-3x+2$.
  3. Lo mismo para $$ f(\frac{x+1}{x})=(\frac{x^2+1}{x^2})+1/x $$
  4. $f(x+y)=f(x)+f(y)+f(x)f(y)$.
  5. Para $x>0$, $f(xy)=xf(y)+yf(x)$.
  6. $f(x+1)+f(x-1)=2x^2-4x$.
 
Problema

El problema 6 de la OMM 2005

Como se sabe, uno de los 6 problemas del concurso nacional de la Olimpiada Mexicana de Matemáticas es muy difícil –incluso para aquellos concursantes que han tenido un buen entrenamiento. He aquí el enunciado del problema 6 del concurso nacional de 2005.

 
Problema

El Tesoro Pirata

En el mapa está un roble, un pino y un mezquite. Las instrucciones son: camina desde el mezquite hacia el pino, gira a la izquierda en ángulo recto, camina la misma distancia que hay del mezquite al pino, y clava ahí una estaca X; después regresa al mezquite, camina hacia el roble, gira a la derecha en ángulo recto, camina la misma distancia que hay entre el roble y el mezquite, y clava ahí una estaca Y. El tesoro está enterrado en el punto medio del segmento XY. ¿Qué hacer si el mezquite ha desaparecido?

 

 
Problema

El Viajero

Un viajero decide tomar un paseo en su propio automóvil, recorriendo un camino que pasa por $n$ ciudades y que lo hará regresar a la misma ciudad. La distancia total del recorrido es de $K$ kilómetros. Por otro lado, cada ciudad (digamos la ciudad $i$, con $i$ entre $0$ y $n$) tiene un máximo de gasolina que puede vender por usuario y con dicha gasolina se puede avanzar alguna cierta cantidad de kilómetros ($K_i$ kilómetros para la ciudad $i$).

 
Problema

Fórmulas de Vieta

Encontrar todas las soluciones del siguiente sistema de tres ecuaciones en tres incógnitas.

x+y+z=2

x^2+y^2+z^2=14

xyz=-6

 
Problema

Hagamos un trato (Let's make a deal –The Monty Hall Paradox)

Suponga que en un show de la televisión usted está participando y el animador le da a elegir tres puertas: lo que hay detrás de la elegida es suyo. Detrás de una de ellas está un auto nuevo, detrás de las otras dos una chiva. Imagine que usted elige una de las puertas, digamos la 1, y en ese momento (antes de abrirla) el conductor, quien sabe qué hay detras de cada puerta, abre una de las dos restantes, digamos la 3, y resulta que ahí hay una chiva. A continuación te pregunta “¿deseas cambiar tu elección (abrir la puerta 2)?”

¿Te conviene cambiar?

 

 
Problema

IMO 2004, problema 2

Encuentre todos los polinomios $P(x)$ tales que

$$P(a-b)+P(b-c)+P(c-a)=2P(a+b+c)$$

para todo $a, b, c$ reales que satisfacen que $ab+bc+ca=0$.

 
Problema

Método "Busca donde hay luz"

Encontrar todas las tripletas de enteros (a,b,c) tales que el producto de dos de ellos más el tercero sea la unidad (o sea el 1).

 
Problema

Problema 1, OMM 2005

Sea $O$ el centro de la circunferencia circunscrita al triángulo $ABC$, y $P$ un punto cualquiera del segmento $BC$ ($P$ no es ni $B$ ni $C$). La circunferencia circunscrita al triángulo $BPO$ corta en $R$ al segmento $AB$ ($R$ no es $A$ ni es $B$), y la circunferencia circunscrita al triángulo $COP$ corta en $Q$ al segmento $CA$ ($Q$ no es $C$ ni es $A$).

i)Demostrar que el triángulo $PQR$ es semejante al $ABC$ y que $O$ es ortocentro de $PQR$.

ii)Demuestrar que las circunferencias circunscritas a los triángulos $BPO$, $COP$ y $PQR$ son todas del mismo tamaño.

 
Problema

QUINTO EXAMEN SELECTIVO

Problema 1 Dado un triángulo acutángulo ABC se trazan las circunferencias c1 de diámetro AB y c2 de diámetro BC y se ubican las intersecciones M y N y P y Q de las alturas CC’ y BB’ (vistas como rectas) con c1 y c2, respectivamente. Demostrar que los puntos M, N, P y Q pertenecen a una misma circunferencia.