Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Juego de intercambios con piedras coloreadas

Enviado por jmd el 11 de Enero de 2012 - 20:59.

Sean $k$ y $n$ enteros positivos con $k\geq 2$. En una línea recta se tienen $kn$ piedras de $k$ colores diferentes. de tal forma que hay $n$ piedras de cada color. Un paso consiste en intercambiar de posición dos piedras adyacentes. Encontrar el menor entero positivo $m$ tal que siempre es posible lograr con a lo sumo $m$ pasos que las $n$ piedras de cada color queden seguidas si:

  • a) $n$ es par,
  • b) $n$ es impar y $k=3$
Problema

Desigualdad con multiplicadores en $\{-1,1\}$

Enviado por jmd el 11 de Enero de 2012 - 20:55.

Sean $x_1,x_2,\ldots,x_n$ números reales positivos. Demostrar que existen $a_1,a_2,\ldots,a_n\in\{-1,1\}$ tales que  $$a_1x_1^2+a_2x_2^2+\ldots+a_nx_n^2\geq(a_1x_1+a_2x_2+\ldots+a_nx_n)^2$$

Problema

Ortocentro de un acutángulo

Enviado por jmd el 11 de Enero de 2012 - 20:54.

Sea $ABC$ un triángulo acutángulo con $AC\neq BC$, y sea $O$ su circuncentro. Sean $P$ y $Q$ puntos tales que $BOAP$ y $COPQ$ son paralelogramos. Demostrar que $Q$ es ortocentro de $ABC$.

Problema

Triángulo con incírculo y tres circunferencias más

Enviado por jmd el 11 de Enero de 2012 - 20:53.

Sea $ABC$ un triángulo y sean $X,Y,Z$ los puntos de tangencia de su incírculo con los lados $BC,CA,AB$, respectivamente. Suponga que $C_1,C_2,C_3$ son circunferencias con cuerdas $XY,ZX,YZ$, respectivamente, tales que $C_1$ y $C_2$ se cortan sobre la recta $CZ$ y que $C_1$ y $C_3$ se corten sobre la recta $BY$. Suponga que $C_1$ corta a las cuerdas $XY$ y $ZX$ en $J$ y $M$, respectivamente; que $C_2$ corta a las cuerdas $YZ$ y $XY$ en $L$ e $I$, respectivamente; y que $C_3$ corta a las cuerdas $YZ$ y $ZX$ en $K$ y $N$, respectivamente. Demostrar que $I,J,K,L,M,N$ están sobre una misma circunferencia.

Problema

Ecuación de inversos OIM 2011

Enviado por jmd el 11 de Enero de 2012 - 20:51.

Encontrar todos los enteros positivos $n$ para los cuales existen tres enteros no nulos $x,y,z$ tales que $x+y+z=0$ y $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}$$

Problema

Por 2, por 3 o más uno

Enviado por jmd el 11 de Enero de 2012 - 20:49.

En la pizarra está escrito el número 2. Ana y Bruno juegan alternadamente, comenzando por Ana. Cada uno en su turno sustituye el número escrito por el que se obtiene de aplicar exactamente una de las siguiente operaciones: multiplicarlo por 2 o multiplicarlo por 3 o sumarle 1. El primero que obtenga un resultado mayor o igual a 2011 gana. Decidir quién tiene una estrategia ganadora y describirla.

Problema

Mesa redonda con vasijas y personas

Enviado por jmd el 11 de Enero de 2012 - 20:47.

Alrededor de una mesa redonda hay 12 personas, y sobre la mesa hay 28 vasijas. Una persona puede ver a otra si y sólo si no hay ninguna vasija alineada con ellos. Demostrar que hay por lo menos dos personas que se pueden ver la una a la otra.

Problema

Colinealidad en configuración de cíclico con ortodiagonales

Enviado por jmd el 11 de Enero de 2012 - 20:45.

Sea $ABCD$ un cuadrilátero cíclico cuyas diagonales $AC$ y $BD$ son perpendiculares. Sean $O$ el circuncentro de $ABC$, $K$ el punto de intersección de las diagonales, $L\neq O$ el punto de intersección de las circunferencias circunscritas a $OAC$ y $OBD$, y $G$ el punto de intersección de las diagonales del cuadrilátero cuyos vértices son los puntos medios de los lados de $ABCD$. Demostrar que $O,K, L,G$ están alineados.

Problema

Medias enteras

Enviado por jmd el 11 de Enero de 2012 - 20:43.

Las medias aritmética, geométrica y armónica de dos enteros positivos distintos son todas números enteros. Hallar el menor valor posible de la media aritmética de los dos enteros.

Problema

Concurrencia en configuración de in y circuncírculos

Enviado por jmd el 11 de Enero de 2012 - 20:41.

Sea $\Gamma$ el incírculo de un triángulo escaleno $ABC$, que es tangente a los lados $BC,CA,AB$ en los puntos $D,E,F$ respectivamente. Las rectas $EF$ y $BC$ se cortan en $G$. La circunferencia de diámetro $GD$ corta a $\Gamma$ por segunda vez en $R$. Sean $P$ y $Q$ los puntos de intersección (distintos de $R$) de $\Gamma$ con $BR$ y $CR$, respectivamente. Las rectas $BQ$ y $CP$ se cortan en $X$, el circuncírculo de $CDE$ corta a $QR$ en $M$ y el circuncírculo de $BDF$ corta a $PR$ en $N$. Demostrar que $PM, QN$ y $RX$ son concurrentes.

Problema

Sucesión en enteros indecisa

Enviado por jmd el 11 de Enero de 2012 - 20:31.

Decidir si existen enteros positivos $a$ y $b$ tales que todos los términos de la sucesión $(X_n)$, definida como $X_1 =2010, X_2 = 2011$, $$X_{n+2} = X_n + X_{n+1} + a\sqrt{X_nX_{n+1} + b}$$ son números enteros.

Problema

Diez monedas, dos preguntas

Enviado por jmd el 11 de Enero de 2012 - 20:30.

Se tienen diez monedas indistinguibles en hilera. Se sabe que dos de ellas son falsas y están en posiciones consecutivas en la hilera. Una pregunta consiste en elegir un subconjunto cualquiera de las monedas y preguntar cuántas de ellas son falsas.  Decidir si es posible identificar con certeza las monedas falsas haciendo solamente dos preguntas, sin conocer la respuesta de la primera antes de formular la segunda.

Problema

Números racionales!!!

Enviado por cuauhtemoc el 10 de Enero de 2012 - 16:53.

Demuestra que la suma de las raíces cuadradas de 2 y 3 suman un número irracional. Esto es, $\sqrt{2} + \sqrt{3}$ es irracional.

Problema

El juego de biribol

Enviado por jmd el 10 de Enero de 2012 - 16:11.

En un partido de biribol se enfrentan dos equipos de cuatro jugadores cada uno. Se organiza un torneo de biribol en el que participan $n$ personas, que forman equipos para cada partido (los equipos no son fijos). Al final del torneo se observó que cada dos personas disputaron exactamente un partido en equipos rivales. Determinar para qué valores de $n$ es posible organizar un torneo con tales características.

Problema

Desigualdad con áreas de dos triángulos

Enviado por jmd el 10 de Enero de 2012 - 16:10.

Sean $ABC$ un triángulo y $X,Y,Z$ puntos interiores de los lados $BC,CA,AB$ respectivamente. Sean $A',B',C'$ los circuncentros correspondientes a los triángulos $AZY,BXZ,CYX$, respectivamente. Demuestre que:
$$(A'B'C')\geq (ABC)/4$$
y que la igualdad ocurre si y sólo si $AA',BB'$ y $CC'$ son concurrentes.

Nota: Para un triángulo cualquiera $RST$, denotamos su área con $(RST)$.

Problema

Ecuación sin soluciones enteras

Enviado por jmd el 10 de Enero de 2012 - 16:09.

Pruebe que la ecuación $$x^{2008}+2008!=21^y$$ no tiene soluciones enteras $(x,y)$

Problema

Divisibilidad en un polinomio cúbico

Enviado por jmd el 10 de Enero de 2012 - 16:08.

Sean $m$ y $n$ números enteros tales que el polinomio $P(x)=x^3+mx+n$ tiene la siguiente propiedad: si $x$ y $y$ son enteros y 107 divide a $P(x)-P(y)$, entonces 107 divide a $x-y$. Demuestre que divide a 107 divide a $m$.

Problema

Bisectriz externa en un escaleno

Enviado por jmd el 10 de Enero de 2012 - 16:06.

Sean $ABC$ un triángulo escaleno y $l$ la bisectriz exterior del $\angle{ABC}$. Sean $P$  y  $Q$ los pies de las perpendiculares a la recta $l$ que pasan por $A$ y $C$, respectivamente. Sean $M$ y $N$ las intersecciones de $CP$ y $AB$ y $AQ$ y $BC$, respectivamente. Pruebe que las rectas $AC,MN$ y $l$ tienen un punto en común.

Problema

Suma de max-min diferencias

Enviado por jmd el 10 de Enero de 2012 - 16:04.

Considere los números $1,2,3,\ldots,2008^2$ distribuidos en un tablero de $2008\times 2008$, de modo que en cada casilla haya un número distinto. Para cada fila y cada columna del tablero se calcula la diferencia entre el mayor y el menor de sus elementos. Sea $S$ la suma de los 4016 números obtenidos. Determine el mayor valor posible de $S$.

Problema

Familia de hexágonos convexos

Enviado por jmd el 10 de Enero de 2012 - 09:39.

Sea $F$ la familia de todos los hexágonos convexos $H$ que satisfacen las siguientes condiciones:

  • (a) los lados opuestos de $H$ son paralelos;
  • (b) tres vértices cualesquiera de $H$ se pueden cubrir con una franja de ancho 1.

Determinar el menor número real $l$ tal que cada uno de los hexágonos de la familia $F$ se puede cubrir con una franja de ancho $l$.

Nota: Una franja de ancho $l$ es la región del plano comprendida entre dos rectas paralelas que están a distancia $l$ (incluidas ambas rectas paralelas).