Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

Indios y antropólogos

Enviado por jmd el 29 de Junio de 2008 - 15:39.

Una región indígena del país ha sido estudiada por 32 antropólogos, cada uno de los cuales ha estudiado a exactamente 5 indígenas. Por otra parte, cada indígena ha sido estudiado por exactamente 8 antropólogos. ¿Cuántos indígenas hay?

Problema

estatal 2008 a

Enviado por jmd el 29 de Junio de 2008 - 15:25.

Determinar todas las parejas $(x,y)$ de números enteros que verifican la ecuación:

$$\frac{1}{x}+\frac{2}{y} =\frac{8}{2x+y}$$

Problema

El mulo y la burra generalizado (Problema 4, regiones 2008)

Enviado por jmd el 9 de Junio de 2008 - 19:08.

Abel le dice a Bárbara: si me dieras n yo tendría dos veces lo que a ti te quede. Bárbara le contesta: si tú me dieras 2 yo tendría n veces lo que a ti te quede. Encontrar todos los valores enteros positivos posibles de n.

Problema

ONMAS 2008 Nivel 1, Problema4

Enviado por jesus el 9 de Junio de 2008 - 18:30.

Francisco olvidó la clave de su tarjeta de banco y quiere realizar un retiro. Apenas recuerda que su clave contiene 4 dígitos y cumplen lo siguiente

  • ninguno de los dígitos es 0 ni es mayor que 5
  • no hay dígitos repetidos
  • no hay dos dígitos adyacentes que sean números consecutivos
  • la clave es un múltiplo de 4

Por ejemplo, el código 5413 no cumple porque el 4 y el 5 son cifras consecutivas, y el código 1135 no cumple porque se repite el 1. Francisco, que tiene muy mala suerte, probó todos los casos posibles y funcionó hasta que probó la última posibilidad. ¿Cuántos casos probó Francisco?

Problema

Solución de una cuadrática (Problema 3, regiones 2008)

Enviado por jmd el 9 de Junio de 2008 - 18:15.

Sea dado un segmento AB de longitud b. Por B se levanta una perpendicular a AB, y sobre ella se fija un punto O tal que BO=a/2. Se traza a continuación la circunferencia de centro O y radio a/2. La recta AO corta en P y Q a la circunferencia (P más cerca de A que Q). Si llamamos x a la longitud de AP, explicar por qué y cómo esta construcción resuelve la ecuación cuadrática $x^2+ax=b^2$. (Nota: de hecho sólo obtiene la raíz positiva de la ecuación, si es que existe.)

Problema

ONMAS 2008 Nivel 1, Problema 3

Enviado por jesus el 9 de Junio de 2008 - 17:59.

Juan tiene que llevar una ficha desde la esquina A hasta la esquina B, moviéndola por las líneas de la cuadrícula del tablero. La ficha puede moverse hacia arriba, hacia abajo, hacia la derecha o hacia la izquierda (la ficha puede pasar varias veces por el mismo punto). Cada vez que la ficha se mueve en sentido horizontal, Juan anota el número de la columna por la que atraviesa. Cuando la ficha finalmente llega a la esquina B, Juan multiplica todos los números que anotó. Encuentra todos los caminos donde el producto de los números anotados por Juan es 8640. Justifica tu respuesta.

Problema

Problema 2, regiones 2008 (La cola del teatro)

Enviado por jmd el 9 de Junio de 2008 - 16:59.

En la cola de la taquilla del teatro están formadas 4 personas con un billete de 50 pesos cada una y 3 con uno de 100 pesos cada una. El boleto cuesta 50 pesos y la caja está vacía al empezar la venta de boletos. (Nota: las personas en la fila sólo se distinguen por el tipo de billete que traen, y cada una trae exactamente un billete.)

  • a) ¿En cuántas ordenaciones diferentes la cola no se detiene por falta de cambio?
  • b) ¿Cuántas ordenaciones diferentes hay –sin importar si detienen o no la cola?
Problema

Problema 1, regional 2008

Enviado por jmd el 9 de Junio de 2008 - 16:26.

La suma de las áreas de dos cuadrados es 400, y el lado de uno mide 3/4 del lado del otro.

a) ¿Cuánto mide el lado de cada uno de los cuadrados?

b) ¿Cuánto medirían si la suma de las áreas fuese 800?

Problema

ONMAS 2008 Nivel 1, Problema 6

Enviado por jesus el 8 de Junio de 2008 - 23:52.

En el triángulo ABC se traza la bisectriz interior CD. Se sabe que el centro del círculo inscrito en el triángulo BCD coincide con el centro del círculo circunscrito del triángulo ABC. Calcular los ángulos del triángulo ABC.

Problema

ONMAS 2008 Nivel 1, Problema5

Enviado por jesus el 8 de Junio de 2008 - 23:51.

Hay que escribir una fila de 20 dígitos de manera que la suma de tres dígitos consecutivos de la fila sea siempre múltiplo de 5. ¿Cuál es la máxima cantidad de dígitos distintos que puede haber en la filal.

Problema

ONMAS 2008 Nivel 1, Problema 1

Enviado por jesus el 8 de Junio de 2008 - 23:48.

Se tiene un cubo con las seis caras de diferente color y deseamos colocar los números del 1 al 6 en las caras del cubo (uno en cada cara). ¿De cuántas formas podemos realizar el acomodo, si deseamos que la suma de los números que están en caras opuestas sea 7?

Problema

ONMAS 2008, Nivel 1, Problema 2

Enviado por jesus el 8 de Junio de 2008 - 23:48.

Sean G una circunferencia de centro O y G’ una circunferencia que pasa por O. Sean A y B los puntos en que G interseca a G’ y escojamos un punto C en G’ distinto de A y B. Tracemos las líneas AC y BC y llamemos D y E a los puntos donde estas líneas cortan a G, respectivamente. Demuestra que AE es paralela a DB.

Problema

Siete enteros

Enviado por jesus el 22 de Marzo de 2008 - 21:57.

En cualquier conjunto de siete enteros siempre hay dos cuya suma o diferencia es múltiplo de 11.

Problema

Longitud Mínima

Enviado por jesus el 29 de Enero de 2008 - 14:23.

Sea ABC un triángulo y P un punto que se mueve sobre la recta que contiene al lado BC. Consideremos M y N los pies de las perpendiculares trazadas desde P sobre los lado AB y AC respectivamente. Encuentra el punto P para el cual MN tiene longitud mínima.

Problema

P4 OMM 2006. Zacatecas 2006: n-cubrimiento de una n-escalera

Enviado por jmd el 7 de Enero de 2008 - 17:51.
Como se sabe, en problemas de olimpiada, el enunciado puede tener una trampa de significado. El problema 4 del XX concurso nacional de la Olimpiada Mexicana de Matemáticas consiste de una pregunta “para qué enteros…”. La mayoría de los concursantes respondieron a la pregunta. Pero a la hora de las revisiones se supo que no bastaba con decir “estos son” sino que había que demostrar que no había otros. La solución necesitaba estar en el formato “los enteros n cumplen la condición si, y sólo si, son de la forma n = f(k)”. He aquí el enunciado del problema 4 del concurso nacional de 2006.
Problema

Un teorema sobre primos

Enviado por vmp el 7 de Enero de 2008 - 17:51.

Para todo primo $ p $, si $p^2 + 2$ es primo entonces $p^3 + 2$ es también primo.

Problema

Ternas Pitagóricas

Enviado por jesus el 7 de Enero de 2008 - 17:50.

Demuestre que para cualquier terna pitagórica $a^2+b^2=c^2$, alguno de los números $a, b, c$ es divisible por tres.

Problema

Sucesión Aritmética y prueba de coprimalidad

Enviado por vmp el 7 de Enero de 2008 - 17:45.

Si ninguno de los números $b,2b,...,(m-1)b$ es divisible entre $m$, entonces $m$ y $b$ son coprimos.

Problema

Un problema interesante de exponentes

Enviado por vmp el 7 de Enero de 2008 - 17:45.

Problema. Encontrar todos los enteros positivos $a,b$ tales que $a^b=b^a$

Problema

Monterrey 97

Enviado por vmp el 7 de Enero de 2008 - 17:44.

Como se sabe, uno de los 6 problemas del concurso nacional de la Olimpiada Mexicana de Matemáticas es trivial –por lo menos para quienes han tenido un buen entrenamiento. He aquí el enunciado del primer problema del concurso nacional de 1997.

Encuentra todos los números primos positivos p tales que también sea un primo positivo.