Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos:
Problema

3m+2 nunca es cuadrado perfecto

Enviado por jmd el 13 de Mayo de 2014 - 09:12.

Sea m un entero. ¿Puede ser cuadrado perfecto un número de la forma 3m+2?

Problema

Ejercicio de asociación de ideas

Enviado por jmd el 13 de Mayo de 2014 - 09:11.

Calcular el valor de $x^3+1/x^3$ si se sabe que $x+1/x=9$.  

 

Problema

Ejercicio de reconocimiento de un producto notable

Enviado por jmd el 13 de Mayo de 2014 - 09:10.

Calcular el valor de

$$\frac{2x+8}{\sqrt{2x+1}+\sqrt{x-3}}$$

si se sabe que $\sqrt{2x+1}-\sqrt{x-3}=2$.

Problema

Ejercicio con rectángulo y punto medio

Enviado por jmd el 13 de Mayo de 2014 - 09:09.

En un rectángulo ABCD, M es el punto medio de BC. Si T es el pie de la perpendicular a AM bajada desde D demostrar que CT=CD.

 

Problema

Cuadrado mágico inconcluso

Enviado por jmd el 13 de Mayo de 2014 - 09:07.

Los números del 1 al 16 se colocan en una cuadrícula de 4 por 4 de manera que la suma por columnas, por filas y por diagonal es la misma. En la siguiente cuadrícula solamente algunas casillas se han llenado. Termina de llenarla.

__ __  3  16
__ 15 __   5
14 __  8  11
7  12  13 __

Problema

Examen con castigo al tin marín

Enviado por jmd el 13 de Mayo de 2014 - 09:04.

En un examen de 10 preguntas, Juan las respondió todas y obtuvo 29 puntos. Si ledieron 5 puntos por cada respuesta correcta y -2 por cada incorrecta ¿cuántas preguntas respondió Juan correctamente?

 

Problema

Ejercicio con diámetro y cuerda perpendicular

Enviado por jmd el 13 de Mayo de 2014 - 05:58.

En un círculo de centro O, sean AB un diámetro, KM una cuerda perpendicular al diámetro AB y C el punto de intersección de la cuerda KM y el diámetro AB. ¿Cuál triángulo tiene mayor área, el BOK o el AOM?

Problema

Ejercicio con progresión aritmética

Enviado por jmd el 13 de Mayo de 2014 - 05:56.

En una progresión aritmética la suma del tercero y el quinto términos es 14 y la suma de los primeros 12 términos es 129. Uno de sus términos es 193 ¿qué posición ocupa en la progresión?

Problema

Residuos de un número y su doble

Enviado por jmd el 13 de Mayo de 2014 - 05:55.

Al dividir un número n entre otro m, el resultado es 3 y sobran 7. Y cuando se divide n entre 2m el cociente es 1 y sobran 15 ¿Cuáles son esos números?

 

Problema

Diagonales y triángulos de un cuadrado

Enviado por jmd el 13 de Mayo de 2014 - 05:54.

En un cuadrado ABCD, las diagonales AC y BD se cruzan en E. Si la diagonal AC mide 12 ¿cuál es el área del triángulo BCE?

Problema

Razonado geométrico

Enviado por jmd el 13 de Mayo de 2014 - 05:53.

Las diagonales de un rectángulo se cruzan en un punto P de tal manera que la distancia al lado más corto es 8 cm mayor que la distancia al lado más largo. Si el perímetro del rectángulo es 88 cm ¿cuál es el área del rectángulo?

Problema

Sin ceros y a lo más un 1

Enviado por jmd el 13 de Mayo de 2014 - 05:51.

¿Cuántos números de dos dígitos no contienen ceros y no más de un 1?

Problema

Páginas de una novela

Enviado por jmd el 13 de Mayo de 2014 - 05:50.

Mientras leía la novela noté que los dígitos de la página que leía sumaban 19, y que los dígitos de la siguiente sumaban 2. ¿Cuál era la página que estaba yo leyendo?

 

Problema

La sala de la doña

Enviado por jmd el 13 de Mayo de 2014 - 05:49.

Doña Oralia va a enmosaicar su sala (de forma cuadrada) y contrata a don Eleno, un mosaiquero de la ciudad, para realizar esa tarea. Después de tomar medidas, don Eleno le dice: "estos 36 mosaicos que usted tiene solamente cubren 4/9 de su sala". Si los mosaicos son de forma cuadrada y miden 30 centímetros de lado ¿cuánto mide de lado la sala de doña Oralia?

Problema

Las tarjetas de Alicia

Enviado por jmd el 13 de Mayo de 2014 - 05:47.
Alicia tenía varias tarjetas ordenadas según una sucesión de números fraccionarios. Pero el viento se las voló y, al reacomodarlas, le faltaron cuatro como se muestra
__, 3/4, 5/4, __, 9/4, 11/4, __, 15/4, __
¿Cuáles son las fracciones faltantes?
 
Problema

Un primo mayor que 3

Enviado por jmd el 11 de Mayo de 2014 - 07:22.

Demostrar que $8p^2+1$ no es primo para ningún primo $p$ mayor que 3. 

Problema

Bisectriz en la mitad de un cuadrado

Enviado por jmd el 11 de Mayo de 2014 - 07:18.

Las diagonales de un cuadrado ABCD se cortan en E, la bisectriz del ángulo DBC corta a la diagonal AC en P y al lado CD en Q. Demostrar que DQ mide el doble que PE.

Problema

Turibús

Enviado por jmd el 11 de Mayo de 2014 - 07:15.

Van a viajar 27 personas en un autobús turístico que puede llevar 12 adentro y 15 afuera (en la parte superior). De las 25 personas, 5 piden ir afuera y 6 piden ir adentro. Si complacemos estas peticiones  ¿de cuántas formas pueden ser distribuidas las personas en el autobús?  (Considere que el orden en que se acomodan en los asientos es irrelevante, solamente importa quienes van adentro y quienes afuera.)

Problema

Un acertijo de Lewis Carroll

Enviado por jmd el 11 de Mayo de 2014 - 07:13.

Un hombre camina durante 5 horas. Primero lo hace a lo largo de un tramo a nivel, después subiendo una loma. Al llegar arriba se regresa y recorre el camino a lo largo de la misma ruta pero de regreso. Caminó a 4 km/h en el camino a nivel, a 3 km/h de subida y a 6 km/h de bajada. Encontrar la distancia que recorrió.

Problema

ONMAPS Tamaulipas 2014 - Problema 10

Enviado por jesus el 28 de Abril de 2014 - 10:11.

En el interior de un triángulo ABC se elige el punto P de tal manera que los ángulos PAC y PBC son iguales. Las perpendiculares desde P a BC y CA cortan estos lados en L y M, respectivamente. Si D es el punto medio de AB, demostrar que DL=DM.