Problemas

Esta es nuestra colección de problemas. Los hemos clasificados por tema, dificultad y tipo de concurso. No dudes en escribir comentarios con tus soluciones o con cualquier duda sobre el problema.
También puedes compartirnos alguno de tus problemas favoritos: redactar un problema
Problema

Coloración en números del 1 al 4027

Cada uno de los números del 1 al 4027 se ha coloreado de verde o de rojo. Cambiar el color de un número es pasarlo a verde si era rojo, y pasarlo a rojo si era verde.
Diremos que dos enteros positivos $m$ y $n$ son cuates si alguno de los números $\frac{m}{n}$ o $\frac{n}{m}$ es un número primo. Un paso consiste en elegir dos números que sean cuates y cambiar el color de cada uno de los números.
Muestra que después de realizar algunos pasos es posible hacer que todos los números del 1 al 2014 sean verdes.

 
Problema

Focos distribuidos en una circunferencia (P1)

Se tienen 25 focos distribuidos de la siguiente manera: los primeros 24 se disponen en una circunferencia colocando un foco en cada uno de los vértices de un 24-ágono regular, y el foco restante se coloca en el centro de dicha circunferencia. Se permite aplicar cualquiera de las siguientes dos operaciones:

 
Problema

Modelación de problemas. Cálculo diferencial e integral I.

1. Se desea cercar un terreno de 2000m2, expresa una ecuación que defina la cantidad de cerco en función de su lado de mayor longitud. Nota: Es un terreno rectangular.

2. Expresa el área de una caja con base cuadrangular si tiene un volumen de 16m2 expresala en función de la longitud de su altura.

3.Se desea construir un cilindro de 40 cm3, expresa el área del cilindro en función de su radio.

 
Problema

Relaciones combinatorias

Sean $r,n$ enteros no negativos tales que $r\leq{n}$.

a) Demostrar que $$\frac{n+1-2r}{n+1-r}C(n,r)$$ es un entero.

b) Demostrar que

$$ \sum_{r=0}^{\lfloor n/2\rfloor}\frac{n+1-2r}{n+1-r}C(n.r)<2^{n-2}$$ para todo $n\geq 9$.
(Nota: $\lfloor x\rfloor$ es el mayor entero menor o igual que x, y $C(n,r)$ es el número de subconjuntos de tamaño r tomados de un conjunto de tamaño n.) 

 
Problema

Viaje redondo

Air Michael y Air Patrick operan vuelos directos que conectan Belfast, Cork, Dublin, Galway, Limerick y Waterford. Para cada par de ciudades exactamente una de las aerolíneas opera la ruta (en ambos sentidos) conectando las ciudades.Demostrar que hay cuatro ciudades para las cuales una de las aerolíneas opera un viaje redondo. (Un viaje redondo para las ciudades P,Q,R,S es un viaje que va de P a Q, de Q a R, de R a S y de S a P.)

 
Problema

Senos cuadráticos

Demostrar que un triángulo ABC es rectángulo si y sólo si 
$$\sin^2A+\sin^2B+\sin^2C=2$$
 
Problema

Todos los primos tales que...

Encontrar todos los números primos $p,q$ tales que $p$ divide a $q+6$ y $q$ divide a $p+7$.

 
Problema

Una recta variable que pasa por un punto fijo

El punto P está fijo en una circunferencia y el punto Q está fijo en una recta. Un punto variable R se mueve sobre la circunferencia pero sin alinearse con P y Q. La circunferencia por P,Q y R corta a la recta de nuevo en V. Demostrar que la recta VR pasa por un punto fijo.

 
Problema

Líneas isogonales y circunferencias con centro en los lados.

Sea $ABCD$ un cuadrilátero cíclico convexo. Sea $H$ un punto sobre $BD$ tal que $AH$ y $AC$ son líneas isogonales (reflejadas en la bisectriz del ángulo en $A$).

Consideremos $\mathcal{C}_B$ y $\mathcal{C}_D$ las circunferencias con cuerda $HC$ y con sus respectivos centros en $AB$ y $AD$.

Llamemos $S$ y $P$ a la intersección de $\mathcal{C}_B$ con la recta $AB$; el vértice $A$ más cerca de $S$ que de $P$. Análogamente llamemos $T$ y $Q$ a la intersección de $\mathcal{C}_D$ con la recta $AD$; el vértice $A$ más cerca de $T$ que de $Q$. Entonces se satisfacen las siguiente propiedades

 
Problema

P6. IMO 2014 - Coloreado de rectas en posición general

Un conjunto de rectas en el plano está en posición general si no hay dos que sean paralelas ni tres que pasen por el mismo punto. Un conjunto de rectas en posición general separa el plano en regiones, algunas de las cuales tienen área finita; a estas las llamamos sus regiones finitas.

Demostrar que para cada $n$ suficientemente grande, en cualquier conjunto de $n$ rectas en posición general es posible colorear de azul al menos $\sqrt{n}$ de ellas de tal manera que ninguna de sus regiones finitas tenga todos los lados de su frontera azules.