Publicaciones Recientes

Problema

Problema 4 - IMO 2016 - Conjunto de enteros fragantes

Un conjunto de números enteros positivos se llama fragante si tiene al menos dos elementos, y cada uno de sus elementos tiene algún factor primo en común con al menos uno de elementos restantes. Sea $P(n) = n^2 + n + 1$.  Determinar el menor número entero positivo $b$ para el cual existe algún número entero no negativo $a$ tal que el conjunto $$\{P(a+1), P(a+2), \dots,  P(a + b)\}$$ es fragante.

 
Problema

Problema 3 - IMO 2016 - Área de un polígono cíclico de coordenadas enteras.

Sea $P=A_1A_2 \dots A_k$ un polígono convexo en el plano. Los vértices $A_1, A_2, \dots, A_k $ tienen coordenadas enteras y están sobre un círculo. Sea $\mathcal{S}$ el área de $P$. Los cuadrados de las los lados de $P$ son todos divisibles por un entero dado $n$. Demuestra que $2\mathcal{S}$ es divisible por $n$,

Traducido del inglés.

 
Problema

Problema 2 - IMO 2016 - Las letras de IMO en un tablero

Hallar todos los enteros positivos $n$ para los que en cada casilla de un tablero de $n \times n$ puede escribir una de las letras $I$, $M$ y $O$ de manera que:

 
Problema

Problema 1 - IMO 2016 - Concurrencia de rectas

El triángulo $BCF$  tiene ángulo recto en $B$. Sea $A$ el punto en la línea $CF$ tal que $FA = FB$ y $F$ se encuentra entre $A$ y $C$. El punto $D$ está elegido de tal manera que $DA= DC$ y $AC$ es la bisectríz de $\angle DAB$. El punto $E$ es tal que $EA=ED$ y $AD$ es la bisectríz de $\angle EAC$. Sea $M$ el punto medio de $CF$. Sea $X$ el punto tal que $AMXE$ es un paralelogramo (donde $AM \parallel EX$ y $AE \parallel MX$). Demuestra que las líneas $BD$, $FX$ y $ME$ son concurrentes.

Traducido del inglés.

 
Noticia

Resultados Examen Estatal

El día viernes 1 de julio fue la Etapa Estatal de la 30 Olimpiada Mexicana de Matemáticas en Tamaulipas. Presentaron un total de 107 alumnos de las distintas regiones del Estado. De ellos, resultaron seleccionados los siguientes 33 alumnos (en orden alfabético por nombre) que forman a la Preselección Tamaulipas 2016.

 
Problema

¿Seguro que sabes contar?

En un concurso de Matemáticas hay 20 participantes, alumnos de Primaria, Secundaria y Bachillerato que se sentarán en una mesa redonda. Hay igual cantidad de alumnos de Secundaria que de Bachillerato. Ya sentados se dividirán en dos equipos con cantidad par de alumnos sentados uno junto a otro (es decir, se pueden tomar de la mano todos los miembros del equipo y formarán una sola cadena). Ellos se dieron cuenta que no importa cómo se formen esos equipos, siempre habrá uno con más alumnos de Secundaria que de Bachillerato. ¿Cuántos alumnos de Primaria hay?

 
Problema

Circunferencia tangente a un cateto

Sea $ABC$ un triángulo rectángulo con $\angle ABC=90$, $BC=72$, $AC=78$. Se considera un punto $D$ sobre el lado $AB$ de tal modo que $2AD=BD$. Sea $O$ el centro de la circunferencia que pasa por los puntos $A$ y $D$ y es tangente al lado $BC$. Encuentra la medida del segmento $OB$.

 
Problema

Las monedas de Ingrid

Ingrid donará $N$ monedas de oro en el año a dos fundaciones protectoras de animales, llamadas $A$ y $B$. Al principio todas las monedas las destinará a $A$. Cada día observa si la cantidad de monedas que tiene $A$ en ese momento es múltiplo de la cantidad de días transcurridos desde que inició la donación, de cumplirse eso, pasa una moneda de $A$ a $B$. El reparto termina cuando la cantidad de días transcurridos es más que la mitad de monedas que tenga $A$.
 
Problema

Tres triángulos que no se cortan

Considera 9 puntos sobre una circunferencia. ¿De cuántas maneras puedes dibujar 3 triángulos con vértices en estos 9 puntos, pero que no compartan vértices, de forma que ningún par de triángulos se corten?

 
Noticia

Información para el Estatal (Preguntas Frecuentes)

Buenos días.

El día de mañana se realizará la Etapa Estatal de la Olimpiada Mexicana de Matemáticas en Tamaulipas. Estamos muy gustosos de recibir a todos los alumnos y les deseamos el mayor de los éxitos a todos.

Este en particular será uno de los Estatales más grandes que hemos tenido en Tamaulipas, recibiremos a los 108 alumnos que fueron seleccionados en las 4 regiones y a los 8 alumnos que representaron a Tamaulipas en la Olimpiada Nacional de Matemáticas para Alumnos de Primaria y Secundaria en la Cd. de México, que fue del 2 al 5 de junio, 116 alumnos en total.