Problemas - Álgebra

Problema

P5. Polinomio con coeficientes en progresión geométrica

Enviado por Samuel Elias el 14 de Junio de 2025 - 02:52.

Sea $a_0, a_1, a_2, \dots$ una sucesión geométrica estrictamente creciente. Determina todos los números reales $x$ para los cuales existe $n \geq 0$ tal que:

$$a_nx^n+a_{n-1}x^{n-1}+\dots + a_1x + a_0=0$$

Nota: Una sucesión geométrica es estrictamente creciente si existe una constante $r$ tal que $a_{n+1}=a_n\cdot r$ y además $a_{n+1}>a_n$ para toda $n \geq 0$.

Problema

P4. Desigualdades del femenil

Enviado por Samuel Elias el 13 de Junio de 2025 - 21:31.

Sean $a, b, c, d$ números reales positivos. Demuestra que:

$$\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)^4 \geq \frac{64abcd}{a^4+b^4+c^4+d^4}$$

Problema

P2. Recibe el doble presionando un boton.

Enviado por Samuel Elias el 13 de Junio de 2025 - 00:12.

Samuel tiene un cajero mágico que funciona de la siguiente manera: él ingresa una cantidad $x$ de dinero, siendo $x$ un entero positivo, y presiona un botón que le da el doble de la cantidad de dinero que hay (mas lo que ya tenía). Por ejemplo, si Samuel inserta 1 peso y presiona el botón, la máquina le dará 2 pesos, por lo que ahora tiene 3 pesos. Si presiona el botón una segunda vez, la máquina le devolverá 6 pesos. Y así sucesivamente. Si Samuel presiona el botón $n$ veces, cuánto dinero, en términos de $x$, tendrá en total?

Problema

P3. Desigualdades en un selectivo

Enviado por Samuel Elias el 19 de Octubre de 2024 - 15:05.

Sean $a,b,c$ números reales positivos tales que $abc=\frac{1}{8}$. Demuestra que: \[a^2+b^2+c^2+a^2b^2+a^2c^2+b^2c^2\geq\frac{15}{16}\]

Problema

2.- Ecuación de ternas en progresión Geométrica

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:47.

Determina todas las ternas de números naturales $(a,b,c)$ con $0<a<b<c$ en progresión geométrica para las cuales se cumplen las siguientes dos ecuaciones: 

$$a+b+c=35$$

$$a^2+b^2+c^2=525$$

Problema

P1. La lista de David

Enviado por Samuel Elias el 14 de Septiembre de 2024 - 13:03.

David hace una lista de 2024 números. El primero de ellos es 1, y los demás se obtienen de sumarle al anterior alguno de los números 1, 2, 3, 4, 5, 6, 7, 8 ó 9. Si ningún número de la lista termina en 0, ¿cuál es el mayor valor que puede tener el último número de la lista? 

Problema

P7. Raíces de cuadráticas

Enviado por jesus el 13 de Junio de 2024 - 12:33.

Consideremos la ecuación cuadrática $x^2+a_0x+b_0$ para algunos reales $(a_0, b_0)$. Repetimos el siguiente proceso tantas veces como sea posible:

Tomamos $r_i$, $s_i$ las raíces de la ecuación $x^2+a_ix +b_i=0$ y $c_i = \min\{r_i, s_i\}$. Y escribimos la nueva ecuación $x^2 +b_ix +c_i$. Es decir, para la repetición $i+1$ del proceso $a_{i+1} = b_i$ y $b_{i+1} = c_i$

Decimos que $(a_0, b_0)$ es una pareja interesante si, después de un número finito de repeticiones, cuando volvemos a realizar el proceso de la nueva ecuación escrita es la misma que la anterior, de manera que $(a_{i+1}, b_{i+1}) = (a_i,b_i)$

Nota: Las raíces de una ecuación son los valores de $x$ tales que $x^2+ax+b=0$

Problema

P1. Ecuación cuadrática con sumatoria

Enviado por jesus el 12 de Junio de 2024 - 00:08.
Sea $x$ un número real. Determina la solución de la siguiente ecuación: \[ \frac{x^2 + 1}{1}+\frac{x^2 + 2}{2}+ \dots + \frac{x^2 + 2024}{2024} = 2024 \]
Problema

P6 Primer problema real de funcionales

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 10:12.

Sea $\mathbb{N}$ el conjunto de los enteros positivos {1, 2, ...}. Determina todas las funciones $f: \mathbb{N} \rightarrow \mathbb{N}$ tales que cualesquiera $m, n \in \mathbb{N}$ se cumple al mismo tiempo que:

$$f(m+n) \ |\ f(m) + f(n)$$ $$f(m)f(n)\ | \ f(mn)$$

Nota: $a | b$ quiere decir que el número entero $a$ divide al número entero $b$.

Problema

P1 OMM 37

Enviado por andre el 9 de Noviembre de 2023 - 09:37.

Encuentra todos los números de 4 dígitos tales que la suma de los cuadrados de sus dígitos es igual al doble de la suma de sus dígitos.