Problemas - Álgebra
P2 OMM 2005. Matrices n-balanceadas
Dadas varias cuadrículas del mismo tamaño con números escritos en sus casillas, su suma se efectúa casilla por casilla. Por ejemplo:
Dado un entero positivo $N$, diremos que una cuadrícula es $N$-balanceada si tiene números enteros escritos en sus casillas y si la diferencia entre los números escritos en cualesquiera dos casillas que comparten un lado es menor o igual que $N$.
P2 OMM 2004. Diferencia no menor que el centésimo del producto
¿Cuál es la mayor cantidad de enteros positivos que se pueden encontrar de
manera que cualesquiera dos de ellos $a$ y $b$ (con a $a\neq b$) cumplan $|a-b|\geq{\frac{ab}{100}$?
Problema 6, IMO 2010
Sea $a_1, a_2, a_3, \ldots$ una sucesión de números reales positivos. Se tiene que para algún entero positivo $s$,
$$a_n = \textrm{max}\{a_k + a_{n-k} \textrm{ tal que } 1 \leq k \leq n - 1\}$$
para todo $n > s$. Demuestre que existen enteros positivos $\ell$ y $N$, con $\ell \leq s$, tales que $a_n = a_\ell + a_{n-\ell}$ para todo $n \geq N$.
Problema 1, IMO 2010
Determine todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que $$f(\lfloor x \rfloor y)= f(x) \lfloor f(y) \rfloor$$ para todos los números $x, y \in \mathbb{R}$. ($\lfloor z\rfloor$ denota el mayor entero que es menor o igual que $z$.)
Chicas Fresa en Palacio
Las chicas fresa andan en Palacio de Hierro (sólo les faltan los lentes para irse de vacaciones a Los Cabos):
K: "¿Ya vieron? ¡Qué looser! ¡Son piratas! Nada que ver conmigo, yo quiero unos Carrera, Champion como los de Lady Gaga".
P4 OMM 2000. Número de primos hasta el primer compuesto
Para $a$ y $b$ enteros positivos, no divisibles entre $5$, se construye una lista de números como sigue:
- El primer número es 5 y,
- a partir del segundo, cada número se obtiene multiplicando el número que le precede (en la lista) por $a$, y sumándole $b$.
(Por ejemplo, si $a = 2$ y $b = 4$, entonces los primeros tres números de la
lista serán: 5, 14, 32 (pues $14 = 5\cdot2 + 4$ y $32 = 14\cdot2 + 4$.)
¿Cuál es la cantidad máxima de primos que se pueden obtener en la lista antes de obtener el primer número no primo?
P3 OMM 2000. Regla aditiva --de formación de un conjunto
Dado un conjunto $A$ de enteros positivos, construimos el conjunto $A'$ poniendo todos los elementos de $A$ y todos los enteros positivos que se pueden obtener de la siguiente manera:
- Se escogen algunos elementos de $A$, sin repetir, y a cada uno de esos números se le pone el signo $+$ o el signo $-$;
- luego se suman esos números con signo, y el resultado se pone en $A'$.
Por ejemplo, si $A = {2, 8, 13, 20}$, entonces algunos elementos de $A'$ son 8 y 14 (pues 8 es elemento de $A$, y 14 = 20+2-8).
P2 OMM 2000. Triángulo de números --con regla simple de formación
Se construye un triángulo como el de la figura, pero empezando con los números del 1 al 2000.
P4 OMM 1998. Sumas de dígitos inversos (\times un dígito)
Encuentre todos los enteros que se escriben como $$\frac{1}{a_1}+\frac{2}{a_2}+\ldots+\frac{9}{a_9}$$ donde $a_1, a_2, \ldots , a_9$ son dígitos distintos de cero que pueden repetir.
P1 OMM 1998. Números suertudos
Un número es suertudo si al sumar los cuadrados de sus cifras, y repetir esta operación suficientes veces, obtenemos el número 1. Por ejemplo, 1900 es suertudo, ya que $1900 \rightarrow 82 \rightarrow 68 \rightarrow 100 \rightarrow 1$. Encuentre una infinidad de parejas de enteros consecutivos, donde ambos números sean suertudos.