Problemas - Álgebra
P4. OMM 1990. Fichas de dominó
Considere las veintisiete fichas de dominó que quedan quitando la blanca-blanca. Tomando en cuenta los puntos que hay en una ficha, a cada ficha le corresponde un número racional menor o igual que uno. ¿Cuál es la suma de todos estos números?
P3. OMM 1990. ¿Inducción? OK ¿Pero te queda claro qué debes demostrar?
Pruebe que $n^{n-1}-1$ es divisible entre $(n-1)^2$ para todo entero $n\geq2$
P4. OMM 1989. Números en expansión decimal
Encuentre el entero positivo mas pequeño $ n $ tal que, si su expansión decimal es $ n=a_ma_{m-1}\ldots{a_2}a_1a_0 $ y $r$ es el número cuya expansión decimal es $r=a_1a_0a_ma_{m-1}\ldots{a_2}0$, entonces $r$ es el doble de $n$.
P3. OMM 1989. Número de 1989 cifras
Pruebe que no existe un número positivo de 1989 cifras que tenga al menos tres de ellas iguales a 5 y tal que la suma de todas las cifras sea igual al producto de las mismas.
P7. OMM 1988. Subconjuntos ajenos de {1,2,...,m}
Si $A$ y $B$ son subconjuntos ajenos del conjunto $\{1,2,\ldots,m\}$ y la suma de los elementos de $A$ es igual a la suma de los elementos de $B$, pruebe que el número de elementos de $A$ y también de $B$ es menor que $m/\sqrt{2}$
Raíces cúbicas de números racionales
Sean $p,q,r$ números racionales no nulos tales que
$$\sqrt[3]{pq^2}+\sqrt[3]{qr^2}+\sqrt[3]{rp^2}$$
es un número racional no nulo. Demostrar que
$$\frac{1}{\sqrt[3]{pq^2}}+\frac{1}{\sqrt[3]{qr^2}}+\frac{1}{\sqrt[3]{rp^2}}$$ es también un número racional.
Suma de dígitos
Si $S(n)$ denota la suma de los dígitos de un número natural n, encontrar todas las soluciones de $n(S(n)-1)=2010$ y demostrar que son las únicas.
Posible cambio de variables en desigualdades (2)
Sean $x,y,z$ números reales positivos. Demostrar que si $xy+yz+zx+2xyz=1$, entonces existen números $a,b,c$ reales positivos tales que
$$x=\frac{a}{b+c},y=\frac{b}{c+a},z=\frac{c}{a+b}$$
Posible cambio de variables en desigualdades
Sean $x,y,z$ números reales positivos y $\sigma_1=x+y+z$, $\sigma_2=xy+yz+zx$, $\sigma_3=xyz$. Demostrar que si $\sigma_3=\sigma_1+2$, entonces existen números $a,b,c$ reales positivos tales que $$x=\frac{b+c}{a},y=\frac{c+a}{b},z=\frac{a+b}{c}$$
Un ejercicio algebraico con polinomios simétricos
Sean $x,y,z$ números reales positivos y $\sigma_1=x+y+z$, $\sigma_2=xy+yz+zx$, $\sigma_3=xyz$, los polinomios simétricos elementales para tres variables. Demostrar que $1/(1+x)+1/(1+y)+1/(1+z)=1$ si y sólo si $\sigma_3=\sigma_1+2$. (En otras palabras, las ecuaciones $1/(1+x)+1/(1+y)+1/(1+z)=1$ y $xyz=x+y+z+2$ pueden ser transformadas una en la otra mediante operaciones algebraicas.)