Problemas - Álgebra

Problema

El fácil de la IMO 1961

Enviado por jmd el 2 de Enero de 2010 - 08:05.

Resolver el sistema de ecuaciones (donde $a,b$ son constantes):

x+y+z&=a\\ x^2+y^2+z^2&=b^2\\ xy&=z^2

Dar, además, las condiciones que deben satisfacer $a,b$ para que las soluciones del sistema $x,y,z$ sean números positivos distintos.

Problema

Polinomios simétricos: instancia de uso

Enviado por jmd el 1 de Enero de 2010 - 13:43.

Sean $a,b,c$ números reales distintos de cero y tales que $a+b+c=0$ y $a^3+b^3+c^3=a^5+b^5+c^5$. Demostrar que $a^2+b^2+c^2=\frac{6}{5}$

Problema

Identidad de Gauss

Enviado por jmd el 1 de Enero de 2010 - 12:44.

a) Demostrar la identidad algebraica $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$

b) Demostrar la identidad $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$

c) Usar el resultados del inciso anterior para demostrar que si $a,b,c$ son reales positivos entonces se cumple la desigualdad  $a^2+b^2+c^2-ab-bc-ca\geq 0$

Problema

Polinomios simétricos en tres variables: resultado fundamental

Enviado por jmd el 1 de Enero de 2010 - 10:47.

Sea $ n $ un entero no negativo y $x,y,z$ números reales.  Con la notación usual, defínanse los polinomios simétricos elementales en tres variables como $\sigma_1=x+y+z,~\sigma_2=xy+yz+zx, ~\sigma_3=xyz$  y $S_n=x^n+y^n+z^n$.

Demostrar:

a) $S_n=\sigma_1\cdot S_{n-1}-\sigma_2\cdot S_{n-2}+\sigma_3\cdot S_{n-3}$, para $n\geq3$

Problema

Polinomios simétricos en dos variables: resultado fundamental

Enviado por jmd el 1 de Enero de 2010 - 10:26.

Sea $ n $ un entero no negativo y $a,b$ números reales.

a)Demostrar la identidad $$a^n+b^n=(a+b)(a^{n-1}+b^{n-1})-ab(a^{n-2}+b^{n-2})$$

Problema

Ejercicios sobre inducción matemática

Enviado por jmd el 28 de Diciembre de 2009 - 21:37.

El n-ésimo número triangular $T_{n}$ se define como la suma de los primeros $ n $ enteros.

Problema

¿Tantos? ¡Qué desorden!

Enviado por jmd el 28 de Diciembre de 2009 - 09:39.

 

Problema

¿Quién tiene más?

Enviado por jmd el 28 de Diciembre de 2009 - 09:20.

Dos vecinos juegan al "quién tiene más" (en varilla para la construcción):

A: Yo tengo 40 y tú 30.

B: Sí, pero las mías miden 4 metros más que las tuyas.

Problema

Dos números

Enviado por jmd el 8 de Diciembre de 2009 - 12:56.

Encontrar dos números tales que su suma, su producto y la diferencia de sus cuadrados son iguales entre sí.

Problema

Impares consecutivos

Enviado por jmd el 4 de Diciembre de 2009 - 11:31.

Dos impares consecutivos son tales que el doble del menor más el recíproco del mayor es 71/7. Encontrar esos números.