Problemas - Álgebra
Identidad de Gauss
a) Demostrar la identidad algebraica $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
b) Demostrar la identidad $a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$
c) Usar el resultados del inciso anterior para demostrar que si $a,b,c$ son reales positivos entonces se cumple la desigualdad $a^2+b^2+c^2-ab-bc-ca\geq 0$
Polinomios simétricos en tres variables: resultado fundamental
Sea $ n $ un entero no negativo y $x,y,z$ números reales. Con la notación usual, defínanse los polinomios simétricos elementales en tres variables como $\sigma_1=x+y+z,~\sigma_2=xy+yz+zx, ~\sigma_3=xyz$ y $S_n=x^n+y^n+z^n$.
Demostrar:
a) $S_n=\sigma_1\cdot S_{n-1}-\sigma_2\cdot S_{n-2}+\sigma_3\cdot S_{n-3}$, para $n\geq3$
Polinomios simétricos en dos variables: resultado fundamental
Sea $ n $ un entero no negativo y $a,b$ números reales.
a)Demostrar la identidad $$a^n+b^n=(a+b)(a^{n-1}+b^{n-1})-ab(a^{n-2}+b^{n-2})$$
Ejercicios sobre inducción matemática
El n-ésimo número triangular $T_{n}$ se define como la suma de los primeros $ n $ enteros.
¿Quién tiene más?
Dos vecinos juegan al "quién tiene más" (en varilla para la construcción):
A: Yo tengo 40 y tú 30.
B: Sí, pero las mías miden 4 metros más que las tuyas.
Dos números
Encontrar dos números tales que su suma, su producto y la diferencia de sus cuadrados son iguales entre sí.
Impares consecutivos
Dos impares consecutivos son tales que el doble del menor más el recíproco del mayor es 71/7. Encontrar esos números.
Comité deshonesto
El dinero (no declarado) de la colecta se va a repartir en partes iguales entre los miembros del comité (pro-viaje de estudios). Si fueran 3 miembros más les tocaría 25 pesos menos, y si fueran 2 menos les tocaría 25 pesos más. ¿Cuántos miembros son y cuánto se repartieron?
XXIIIOMM Problema 4
Sea $n>1$ un entero impar y sean $a_1,a_2,\ldots,a_n$ números reales distintos. Sea $ M $ el mayor de estos números y sea $m$ el menor de ellos. Muestra que es posible escoger los signos de la expresión $s=\pm {a_1} \pm {a_2}\pm \ldots \pm {a_n}$ de manera que $m<s<M$.