Problemas - Álgebra
Un libro de regalo
Fui a la librería y me gustó un libro (Cómo ser feliz en 7 lecciones). Compré varios ejemplares para regalar en Navidad a mis amistades. Por eso la señorita me hizo un descuento de 10 pesos por cada copia. Pagué 1200 pesos. Sin ese descuento, con los 1200 hubiera comprado 4 libros menos.
Un problema de edades
Hace 10 años Jesús tenía la misma edad que Lourdes tiene ahora. Dentro de 7 años Madonna tendrá dos veces la edad de Jesús, aunque actualmente tiene 3 años más que cuatro veces la edad de Lourdes.
XXIV Olimpiada Iberoamericana de Matemáticas (problema 5)
La sucesión $a_n$ está definida por
$a_1=1, a_{2k}=1+a_k$ y $a_{2k+1}=\frac{1}{a_{2k}}$, para todo entero $k\geq 1$.
Demostrar que todo número racional positivo aparece exactamente una vez en esa sucesión.
Progresión aritmética con un cuadrado
Demostrar que si una progresión aritmética de enteros positivos contiene un cuadrado perfecto entonces contiene infinitamente muchos cuadrados perfectos.
Partir la baraja
Sea $ n $ un entero positivo. Una baraja de $2n$ cartas contiene exactamente dos cartas marcadas con cada uno de los enteros $1,2,\ldots,n.$ Las cartas se ordenan en la forma $1,1,2,2,3,3,...,n,n.$ La baraja ya ordenada de esta manera se parte, y resulta que, en las dos partes, los dígitos en las cartas suman la misma cantidad.
IMO 2009, Problema 5
Determinar todas las funciones f del conjunto de los enteros positivos en el conjunto de los enteros positivos tales que, para todos los enteros positivos a y b, existe un triángulo no degenerado cuyos lados miden
$$a, f(b) \textrm{ y } f(b + f(a) - 1)$$
(Un triángulo es no degenerado si sus vértices no están alineados).
IMO 2009, Problema 3
Sea $s_1, s_2, s_3, \ldots $ una sucesión estrictamente creciente de enteros positivos tal que las
subsucesiones
$$s_{s_1} , s_{s_2} , s_{s_3} ,\ldots \textrm{ y } s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \ldots $$
son ambas progresiones aritméticas. Demostrar que la sucesión $s_1, s_2, s_3, . . .$ es también una progresión
IMO 2009 Problema 1
Sea $ n $ un entero positivo y sean $a_1,a_2,...,a_k (k\geq 2)$ enteros distintos del conjunto $ {1,...,n} $, tales que $ n $ divide a $a_i(a_{i+1}-1)$, para $i=1,..., k-1$. Demostrar que $ n $ no divide a $a_k(a_1-1)$.
Encontrar el término n de una sucesión
Considere la sucesión $a_1=1$ y, para $ n $ mayor que 1, $a_n=1+2a_{n-1}.$ Encontrar una fórmula para el término n-ésimo y demostrarla por inducción.
L1.P22 (Una ecuación cuadrática)
La ecuación $x^2+bx+2=0$ tiene solamente una raíz. Determinar los valores de $b$.