Problemas - Álgebra
El "maistro" más marrulla del ejido
Abel, Bocho y Casiano, tres "maistros" especialistas en construcción de bardas de adobón, ganaron un contrato para construir una.
Un chico fresa
Blaine, un chico fresa de la ciudad, se fue a "macalear" (de compras a McAllen) el fin de semana. Se compró una cachucha, una playera y un par de zapatos tenis.
Ida y vuelta
Una persona camina de $A$ a $B$ a 4 km/h y de regreso de $B$ a $A$ camina a 6 km/h. Si tarda 45 minutos en la caminata de ida y vuelta ¿cuál es la distancia entre A y B?
Problema 6 OMM 2003
Dado un entero $n$ un cambio sensato consiste en sustituir $n$ por $2n+1$ ó $3n+2$. Dos enteros positivos $a$ y $b$ se llaman compatibles si existe un entero que se puede obtener haciendo uno o más cambios sensatos, tanto a partir de $a$, como a partir de $b$. Encuentra todos los enteros positivos compatibles con $2003$ menores que $2003$.
Cálculo inteligente
¿Cuál es el resultado de la siguiente operación?
$(12, 345, 678)^2 - (12, 345, 677) \times (12, 345, 679)$
Problema del concurso de primavera español
La edad del padre de Nacho es cuatro veces la edad de éste. Dentro de cuatro años será sólo el triple. ¿Cuántos años desde ahora deben pasar para que sea sólo el doble?
- A) 16
- B) 18
- C) 20
- D) 24
- E) 3
Problema de suma con raices
Demuestra la siguiente igualdad
$$ \frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \cdots + \frac{1}{\sqrt{2007}+\sqrt{2008}} = 2\sqrt{502}-1 $$
Lola la trailera
Un día Lola la trailera midió el tiempo que le tomó atravesar un túnel desde que entró a él hasta que salió por completo. Al otro día, ya de regreso traía un contenedor añadido el cual incrementó la longitud del trailer de 6 a 12 metros. Al cruzar el túnel la segunda vez, Lola redujo la velocidad en un 20% y midió el tiempo de nuevo, resultando que se tardó un 50% más que la primera vez. Encontrar la longitud del túnel en metros.
estatal 2008 a
Determinar todas las parejas $(x,y)$ de números enteros que verifican la ecuación:
$$\frac{1}{x}+\frac{2}{y} =\frac{8}{2x+y}$$
Problema 1, regional 2008
La suma de las áreas de dos cuadrados es 400, y el lado de uno mide 3/4 del lado del otro.
a) ¿Cuánto mide el lado de cada uno de los cuadrados?
b) ¿Cuánto medirían si la suma de las áreas fuese 800?