Publicaciones Recientes

Entrada de blog

Resultados XXXVII OMM

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 13:02.

Hola, les escribo desde mi casa XD, el día de hoy llegamos a Tamaulipas desde Durango, llegamos a las 7:00 am. La verdad, desde mi punto de vista como participante, el nacional estuvo muy triste, pude haber hecho más. Desde mi punto de vista como persona, es que esta olimpiada estuvo bastante bien como las demás, en los últimos 5 años Tamaulipas no ha caído en el rankin como solía hacerlo en años pasados, manteniendose siempre entre los mejores 16 del país, y en 2 ocasiones entrando en los mejores 8. 

Esta año, Tamaulipas quedó en 11° lugar, con los siguientes resultados:

Problema

P6 Primer problema real de funcionales

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:12.

Sea $\mathbb{N}$ el conjunto de los enteros positivos {1, 2, ...}. Determina todas las funciones $f: \mathbb{N} \rightarrow \mathbb{N}$ tales que cualesquiera $m, n \in \mathbb{N}$ se cumple al mismo tiempo que:

$$f(m+n) \ |\ f(m) + f(n)$$ $$f(m)f(n)\ | \ f(mn)$$

Nota: $a | b$ quiere decir que el número entero $a$ divide al número entero $b$.

Problema

P5 Concurrencia de 2 círculos y 1 segmento

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:08.

Sean $ABC$ un triángulo acutángulo, $\Gamma$ su circuncírculo y $O$ su circuncentro. Sea $F$ el punto en $AC$ tal que $\angle COF = \angle ACB$, donde $F$ y $B$ están de lados opuestos respecto a $CO$. La recta $FO$ corta a $BC$ en $G$. La paralela a $BC$ por $A$ interseca a $\Gamma$ de nuevo en $M$. Las rectas $MG$ y $CO$ se cortan en $K$. Demuestra que los circuncírculos de los triángulos $BGK$ y $AOK$ concurren en $AB$.

Problema

P4 Un mago y sus fichas B/N

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 09:03.

Dada una colección de varias fichas que pueden ser negras o blancas y que tienen, cada una, un número escrito en ellas, un mago hace el siguiente movimiento: Toca 2 de las fichas con distinto número y color, y la de número menor se convierte en una ficha idéntica a la otra. 

Sea $n$ un entero mayor o igual a 2. Para cada uno de los movimientos del 1 al $n$, el mago pone en la mesa una ficha negra o blanca con ese número. Luego hace su $movimiento$ para ir modificando la colección. 

Problema

P3 Regresa la Geo a la OMM

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 08:53.

Sea $ABCD$ un cuadrilátero convexo. Si $M, N, K$ son los puntos medios de los segmentos $AB$, $BC$ y $CD$ respectivamente, y además existe un punto $P$ dentro del cuadrilátero $ABCD$ tal que, $\angle BPN = \angle PAD$ y $\angle CPN = \angle PDA$. Demuestra que $AB \cdot CD$ = $4PM \cdot PK$

Problema

P2 Germán y su obsesión con los polígonos regulares.

Enviado por Samuel Elias el 11 de Noviembre de 2023 - 08:47.

Los números del 1 al 2000 se encuentran colocados sobre los vértices de un polígono regular de 2000 lados, uno en cada vértice, de manera que se cumple lo siguiente: Si cuatro enteros $A, B, C, D$ cumplen que $1\leq A < B < C < D \leq 2000$, entonces el segmento que une los vértices donde están los números $A$ y $B$ y el segmento que une los vértices donde están $C$ y $D$ no se intersectan en el interior del polígono. Demuestra que existe un entero positivo que es un cuadrado perfecto tal que el número diametralmente opuesto a él no es un número cuadrado perfecto.

Problema

P1 OMM 37

Enviado por andre el 9 de Noviembre de 2023 - 08:37.

Encuentra todos los números de 4 dígitos tales que la suma de los cuadrados de sus dígitos es igual al doble de la suma de sus dígitos.

Problema

3.- Ortocentro como Punto Medio

Enviado por Samuel Elias el 1 de Noviembre de 2023 - 17:31.

Sean $ABC$ un triángulo acutángulo, $H$ su ortocentro y $M$ el punto medio de $BC$. La perpendicular a $MH$ por $H$ corta a $AB$ en $L$ y a $AC$ en $N$. Demuestra que $LH=HN$.

NOTA: El ortocentro es la intersección de las alturas del triáungulo. 

Un triángulo acutángulo es aquel que tiene sus 3 ángulos agudos.

Problema

2.- Un 2024-ágono y sus diagonales

Enviado por Samuel Elias el 31 de Octubre de 2023 - 20:07.

Cada diagonal de un polígono regular de 2024 lados se va a pintar con un color, de manera que dos diagonales que se intersecten dentro del polígono sean de distinto color. ¿Cuál es el mínimo número de colores necesarios para cumplir esta tarea? 

Problema

1.- Un problema Clásico de Factorización en Teoría de números

Enviado por Samuel Elias el 31 de Octubre de 2023 - 20:01.

Determina todas las parejas de enteros positivos $(p, k)$ con $p$ un número primo tales que:

$p^k-k^p=9k$

Distribuir contenido