Publicaciones Recientes

Problema

P1. Repaso de la cantidad de divisores de un número.

Enviado por Samuel Elias el 19 de Octubre de 2024 - 15:00.
Un entero positivo $n$ tiene exactamente 2 divisores, mientras que el número $n + 1$ tiene exactamente 3
divisores. ¿Cuál es la mayor cantidad de divisores que puede tener el número $n + 2$?
Problema

3.- Los delegados de Tamaulipas jugando una modificación de ajedrez

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:57.

Considera un tablero de ajedrez de $8 \times 8$. Orlando y Moisés juegan alternando turnos, comenzando por Orlando. Cada uno en su turno coloca un alfil en alguna casilla del tablero vacía, de tal forma que los alfiles no se ataquen entre sí. Pierde el jugador que coloque un alfil que sea atacado por otro previamente. Si los alfiles son del mismo color (es decir, o tienen puros alfiles blancos o puros alfiles negros), determina quién tiene una estrategia ganadora y descríbela. 
Nota: un jugador puede atacarse a sí mismo. 

Problema

2.- Ecuación de ternas en progresión Geométrica

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:47.

Determina todas las ternas de números naturales $(a,b,c)$ con $0<a<b<c$ en progresión geométrica para las cuales se cumplen las siguientes dos ecuaciones: 

$$a+b+c=35$$

$$a^2+b^2+c^2=525$$

Problema

1.- Aprovecha el radio con isósceles.

Enviado por Samuel Elias el 19 de Octubre de 2024 - 14:40.

Sea $ABC$ un triángulo tal que $ABC=60$° y sea $O$ su circuncentro de tal forma que $CBO=45$°. La recta $BO$ corta al segmento $AC$ en $D$. Demuestra que el triángulo AOD es isósceles y encuentra la medida de sus ángulos.  

Entrada de blog

Comentarios del Estatal de 2024

Enviado por Samuel Elias el 29 de Septiembre de 2024 - 13:25.

Particularmente este año, he sentido algo complicado el proceso selectivo. Se nos han juntado muchas fechas, hemos tenido que revisar a altas horas de la noche y conseguir apoyo a terceros es cada vez más complicado. 

Sobre el examen, daré mis comentarios por problema (los problemas ya se publicaron en la sección de problemas, ver Estatal 2024). 

Entrada de blog

Una sumergida histórica en la OMM Tamaulipas

Enviado por Samuel Elias el 14 de Septiembre de 2024 - 14:04.

En los últimos 5 años, Tamaulipas ha tenido un crecimiento sorprendente en el concurso nacional a comparación de años anteriores. Los resultados han sido: 
1) 2019

Concursante Resultado

Ana Camila Cuevas González

Problema

P4. Razones de semejanza estatales

Enviado por Samuel Elias el 14 de Septiembre de 2024 - 13:21.
 Sea $ABC$ un triángulo rectángulo con $\angle ABC=90$. Sea $U$ un punto cualquiera sobre $AC$. Sean $D$ y $E$ puntos sobre $AB$ y $BC$ de tal forma que $\angle EUD=90$. Se traza un segmento perpendicular a $AC$ desde $D$ y el punto de intersección se llama $F$. Asímismo, se traza un segmento perpendicular a $AC$ desde $E$, y el punto de intersección es $G$. Demuestra que: 
    $$\frac{AF}{FU}=\frac{GU}{CG}$$
Problema

P3. Un fotógrafo amante de la combinatoria

Enviado por Samuel Elias el 14 de Septiembre de 2024 - 13:09.
Se desea sacarle una foto a una familia de 8 personas, todas de estaturas diferentes.
El fotógrafo quiere ordenarlos en dos filas de cuatro personas, ambas filas con estaturas ascendentes de izquierda a derecha y de modo que cada persona de la fila de atrás sea más alta que la que tiene delante. ¿De cuántas maneras diferentes pueden acomodarse las 8 personas para la foto cumpliendo las condiciones anteriores?
Problema

P2. Números parciales y totales

Enviado por Samuel Elias el 14 de Septiembre de 2024 - 13:07.

Para cualquier número natural, llamemos ``números parciales'' a los números formados por sus dígitos. Por ejemplo, los números parciales de 149 son 1, 4, 9, 14, 19, 49 y 149, y los números parciales de 313 son 3, 1, 31, 33, 13 y 313. Un número natural es ``totalmente primo'' si todos sus ``números parciales'' son números primos. Encuentra todos los números ``totalmente primos''.

Problema

P1. La lista de David

Enviado por Samuel Elias el 14 de Septiembre de 2024 - 13:03.

David hace una lista de 2024 números. El primero de ellos es 1, y los demás se obtienen de sumarle al anterior alguno de los números 1, 2, 3, 4, 5, 6, 7, 8 ó 9. Si ningún número de la lista termina en 0, ¿cuál es el mayor valor que puede tener el último número de la lista? 

Distribuir contenido