Publicaciones Recientes
P8. Permutando 2n números y múltiplos.
Encuentra todas las parejas de enteros positivos $(n, m)$ que cumplan lo siguiente: existe un entero impar $r$ con $0<r \leq m-1$, y una permutación $\{a_1, \dots, a_n, b_1, \dots, b_n\}$ de $\{2, 3, \dots , 2n, 2n+1\}$ tales que los $n$ números
$$a_1b_1-r, a_2b_2-r, \dots , a_nb_n-r$$
son todos múltiplos de $m$.
P7. Contando el producto ij.
Sea $n$ un entero positivo. Se numeran los renglones y las columnas de una cuadrícula de $n \times n$ del 1 al $n$. Dentro de cada cuadrito se escribe un entero no-negativo de manera que el entero escrito en el cuadrito del renglón $i$ y la columna $j$ es igual a la cantidad de cuadritos que tienen escrito el producto $i \cdot j$. Determina de cuántas maneras se puede hacer esto.
P6. Razones entre cíclicos dobles y pies de perpendicular.
Sea $ABCD$ un cuadrilatero cíclico y $E$ el punto de intersección de sus diagonales. La circunferencia que pasa por los vértices del triángulo $BEC$ corta a la recta $AB$ en $F$ y a la recta $CD$ en $G$. Sea $P$ el pie de la perpendicular desde $A$ sobre la recta $BC$ y sea $Q$ el pie de la perpendicular desde $B$ sobre la recta $AD$. Demuestra que:
$$\frac{AF}{DG}=\frac{AP}{BQ}$$
P5. Polinomio con coeficientes en progresión geométrica
Sea $a_0, a_1, a_2, \dots$ una sucesión geométrica estrictamente creciente. Determina todos los números reales $x$ para los cuales existe $n \geq 0$ tal que:
$$a_nx^n+a_{n-1}x^{n-1}+\dots + a_1x + a_0=0$$
Nota: Una sucesión geométrica es estrictamente creciente si existe una constante $r$ tal que $a_{n+1}=a_n\cdot r$ y además $a_{n+1}>a_n$ para toda $n \geq 0$.
P4. Desigualdades del femenil
Sean $a, b, c, d$ números reales positivos. Demuestra que:
$$\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\right)^4 \geq \frac{64abcd}{a^4+b^4+c^4+d^4}$$
P3. Ortocentros obtusángulos y colinealidad
Sea $ABC$ un triángulo escaleno con $\angle BAC = 90^{\circ}$, y sea $M$ el punto medio de $BC$. La recta perpendicular a $AM$ por $M$ intersecta a las rectas $AB$ y $AC$ en $P$ y $Q$ respectivamente. Sean $H_1, H_2$ los ortocentros de los triángulos $CMP$ y $BMQ$ respectivamente. Demuestra que $H_1H_2$ pasa por $A$.
NOTA: el ortocentro es la intersección de las tres alturas.
P2. Producto de primos y MCD.
Los conjuntos $A, \ B, \ C$ y $D$ cumplen las siguientes condiciones:
- Sus elementos son números enteros del 1 al 20.
- Cada conjunto tiene 4 elementos y no hay un mismo número en dos o más conjuntos distintos.
- Sean $P_a, \ P_b, \ P_c, \ P_d$ los productos de los números en los conjuntos $A, B, C, D$ respectivamente, y $Q_a, Q_b, Q_c, Q_d$ el producto de los factores primos distintos de $P_a, P_b, P_c, P_d$ respectivamente.
Se cumple que:
$$P_a \cdot P_b = P_c \cdot P_d$$
$$mcd(Q_a,Q_b)\cdot mcd(Q_c,Q_d) \leq 3$$
¿De cuántas maneras se pueden elegir los conjuntos?
P1. Desperdiciando agua en garrafones infinitos
Luna y sus amigas estan jugando con agua. Tienen $n$ garrafones vacíos de capacidad infinita y $m$ botellas llenas de agua, con $m>n$. Las botellas están ordenadas y numeradas $1, 2, \dots, m$, de la más pequeña a la más grande. La botella $i$ tarda exactamente $i$ segundos en vaciarse, para $1 \leq i \leq m$. Sus amigas van a vaciar el agua de las botellas en los garrafones siguiendo estas reglas:
P4. Numero primo vs cubo perfecto
Sea $p$ un número primo (positivo). El número $16p + 1$ es un cubo perfecto. ¿Cuáles son los posibles valores para $p$?
P3. DANI el ciclico
Sea $ABC$ un triángulo con $\angle CAB =90 ^ {\circ}$ e incentro $I$. Las bisectrices de $\angle C$ y $\angle B$ intersecan a $AB$ y $AC$ en $E$ y $F$ respectivamente, e intersecan a la perpendicular de $BC$ por $A$ en los puntos $P$ y $Q$ respectivamente. Sean $D$ y $N$ los puntos medios de $PE$ y $QF$ respectivamente.
- Demuestra que los puntos $D, \ A, \ N, \ I$ están sobre una circunferencia.
- Demuestra que $DN$ es paralela a $BC$
