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1. Problem 1.2.2 (USAMO 1994/3)
A convex hexagon ABCDEF is inscribed in a circle such that AB = CD = EF and
diagonals AD,BE,CF are concurrent. Let P be the intersection of AD and CE.
Prove that

CP

PE
=

(
AC

CE

)2
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Solution: Let θ = 6 ACB, α = 6 BDC, β = 6 DFE, γ = 6 FBA. Then 6 EPA = 6 EDB =
6 CPD = 2θ + γ and 6 PAE = 6 DBE = 6 DCP = β, so 4EPA ∼ 4EDB ∼ 4DPC.
Therefore

CP/CD

PE/AE
=
AP/AE

PE/AE
=
AP

PE
=
BD

DE
.

Also 6 ECA = 6 DOC = 6 EDO = θ + γ and 6 AEC = 6 CDO = 6 OED = θ + α,
so 4ACE ∼ 4COD ∼ 4ODE. (In fact, all six triangles given by O and two adjacent
vertices of hexagon ABCDEF are similar to ACE, by analogous angle-chasing.) Finally,
4ACE ∼= 4BDF as ABCD, CDEF , EFAB are all isosceles trapezoids. Therefore

CP

PE
=
CD

AE

BD

DE
=
OD

CE

AC

DE
=
AC

CE

OD

DE
=

(
AC

CE

)2

.

2. Problem 1.2.3 (IMO 1990/1)
Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an interior
point of the segment EB. The tangent line of E to the circle through D,E,M intersects
the lines BC and AC at F and G, respectively. If AM/AB = t, find EG/EF in terms of t.
Solution: Let N be the second intersection of the circle through A, B, C, D with the circle
through D, E, M . Note 6 NEG = 6 NDE = 6 NDC = 6 NBC = 180 − 6 NAC = 6 NAG;
therefore N , G, A, and E are concyclic, so 6 NGE = 6 NAE = 6 NAM . We also have
6 NMA = 6 NME = 6 NEG, so 4NAM ∼ 4NGE; therefore

EG

AM
=
NG

NA
.

As 6 NBF = 6 NBC = 6 NEG = π − 6 NEF , N , B, E, F are concyclic, so 6 NFG =
6 NFE = 6 NBE = 6 NBA; as 6 NGF = 6 NGE = 6 NAE = 6 NAB, 4NGF ∼ 4NAB,
so

GF

AB
=
NG

NA
.

These two equations give us EG/GF = AM/AB = 1/t; simple algebra gives

EG

EF
=

t

1− t

3. Problem 1.3.2
Two circles intersect at points A and B. An arbitrary line through B intersects the first

circle again at C and the second circle again at D. The tangents to the first circle at C
and the second at D intersect at M . Through the intersection of AM and CD, there passes
a line parallel to CM and intersecting AC at K. Prove that BK is tangent to the second
circle.
Solution: Note that 6 DMC = 6 MDC+ 6 DCM = 6 MDB+ 6 BCM = 6 DAB+ 6 BAC =
6 DAC, so points A, C, D, and M are concyclic. Let P = AM∩CD; then 6 KAB = 6 CAB =
6 MCB = 6 MCP = 6 KPC = 6 KPB, so points A, K, B, P are concyclic. Now

6 KBD = 6 KBP = 6 KAP = 6 CAM = 6 CDM = 6 BDM = 6 BAD;

therefore BK is tangent to the second circle.
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4. Problem 1.3.3
Let C1, C2, C3, C4 be four circles in the plane. Suppose that C1 and C2 intersect at P1 and
Q1, C2 and C3 intersect at P2 and Q2, C3 and C4 intersect at P3 and Q3, and C4 and C1

intersect at P4 and Q4.
Show that if P1, P2, P3, and P4 lie on a line or circle,then Q1, Q2, Q3, and Q4 also lie on a
line or circle.
Solution: Suppose P1, P2, P3, P4 lie on a line or circle; then 6 P4P1P2 = 6 P4P3P2, so
6 P4P1P2 + 6 P2P3P4 = 0. We have

6 Q1Q2Q3 = 6 Q1Q2P2 + 6 P2Q2Q3 = 6 Q1P1P2 + 6 P2P3Q3

6 Q3Q4Q1 = 6 P4Q4Q1 + 6 Q3Q4P4 = 6 P4P1Q4 + 6 Q3P3P4

so 6 Q1Q2Q3 + 6 Q3Q4Q1 = 6 P4P1P2 + 6 P2P3P4 = 0.Therefore Q1, Q2, Q3, Q4 lie on a line
or circle.

5. Problem 1.4.1 (IMO 1994/2) Let ABC be an isosceles triangle with AB = AC. Suppose
that

1. M is the midpoint of BC and O is the point on the line AM such that OB is perpen-
dicular to AB;

2. Q is an arbitrary point on the segment BC different from B and C;

3. E lies on the line AB and F lies on the line AC such that E,Q, F are distinct and
collinear.

Prove that OQ is perpendicular to EF if and only if QE = QF .
Solution: First, suppose OQ ⊥ EF . Then 6 EBO = 6 EQO = 6 FQO = 6 FCO = π/2,
so quadrilaterals BQOE and FQOC are cyclic. Therefore 6 FEO = 6 QEO = 6 QBO =
6 CBO = 6 BCO = 6 QCO = 6 QFO = 6 EFO, so OE = OF ; since OQ ⊥ EF , QE = QF .

Now suppose QE = QF , but OQ is not perpendicular to EF . Construct E ′F ′ through
Q perpendicular to OQ with E ′ on the ray AB and F ′ on the ray AC; then by the first
part QE ′ = QF ′. Since QE = QF and 6 EQE ′ = 6 FQF ′, 4QEE ′ ∼= 4QFF ′. But then
6 EE ′F ′ = 6 EE ′Q = 6 FF ′Q = 6 FF ′E ′, so EE ′ ‖ FF ′, impossible as then AB ‖ AC. So
OQ ⊥ EF .

6. Problem 2.1.1
Suppose the cevians AP,BQ,CR meet at T .
Prove that

TP

AP
+
TQ

BQ
+
TR

CR
= 1

Solution:
Let K = [ABC]. Then TP/AP = [TBC]/K, TQ/BQ = [TCA]/K, TR/CR = [TAB]/K,
so

TP

AP
+
TQ

BQ
+
TR

CR
=

[TBC] + [TCA] + [TAB]

K
=

[ABC]

K
= 1.

3



7. Problem 2.1.3 (Hungary-Israel, 1997)
The three squares ACC1A

′′, ABB′1A
′, BCDE are constructed externally on the sides of a

triangle ABC. Let P be the center of BCDE. Prove that the lines A′C,A′′B, PA are
concurrent.
Solution: Let A1 be the foot of the perpendicular from A′′ to AB, and C1 the foot of the
perpendicular from A′′ to BC; then

sin 6 ABA′′

sin 6 A′′BC
=
A′′A1/BA

′′

A′′C1/BA′′
=
A′′A1

A′′C1

=
b cosA

b
√

2 cos(C + π/4)
=

cosA

cosC − sinC
.

(We take A′′A1 > 0 when A′′ and C are on the same side of A1, otherwise A′′A1 < 0;
similarly for A′′C1.) Similarly

sin 6 BCA′

sin 6 A′CA
=
c
√

2 cos(B + 45)

c cosA
=

cosB − sinB

cosA
.

Finally, let C2 be the foot of the perpendicular from P to AC and B2 the foot of the
perpendicular from P to AB; then

sin 6 CAP

sin 6 PAB
=
PC2/AP

PB2/AP
=
PC2

PB2

=
(a/
√

2) cos(C + 45)

(a/
√

2) cos(B + 45)
=

cosC − sinC

cosB − sinB
.

Therefore

sin 6 ABA′′

sin 6 A′′BC

sin 6 BCA′

sin 6 A′CA

sin 6 CAP

sin 6 PAB
=

cosA(cosB − sinB)(cosC − sinC)

(cosC − sinC) cosA(cosB − sinB)
= 1,

so AP , BA′′, CA′ concur by Trig Ceva.

8. Problem 2.1.4 (Răzvan Gelca) r
LetABCbeatriangleandD,E, FthepointswheretheincircletouchesthesidesBC,CA,AB, respectively.LetM,N,PbepointsonthesegmentsEF,
FD,DErespectively.ShowthatthelinesAM,BN,CPintersectifandonlyifthelinesDM,EN,FPintersect.
Solution:FromMdropperpendicularsMR,MQtoAB,ACrespectively.Then4FRM ∼ 4EQM ,
as 6 RFM = 6 AFE = 6 FDE = 6 FEA = 6 MEQ; therefore

sin 6 BAM

sin 6 MAC
=
RM/MA

QM/MA
=
RM

QM
=
FM

EM
.

Therefore

sin 6 BAM

sin 6 MAC

sin 6 ACP

sin 6 PCB

sin 6 CBN

sin 6 NBA
=
FM

ME

EP

PD

DN

NF
,

so DM , EN , FP concur if and only if AM , BN , CP do.

4



9. Problem 2.1.5 (USAMO 1995/3)
Given a nonisosceles, nonright triangle ABC inscribed in a circle with center O, and let
A1, B1, and C1 be the midpoints of sides BC,CA, and AB, respectively. Point A2 is located
on the ray OA1 so that 4OAA1 is similar to 4OA2A. Points B2 and C2 on rays OB1 and
OC1, respectively, are defined similarly. Prove that lines AA2, BB2, and CC2 are concurrent.
Solution: Let G be the centroid and H the orthocenter of 4ABC. Then 6 OAA2 =
6 OA1A = 6 A1AH, and 6 BAO = π/2 − C = 6 HAC, so 6 BAA2 = 6 A1AC. Similarly
6 AA2C = 6 BAA2, etc., so

sin 6 BAA2

sin 6 A2AC

sin 6 ACC2

sin 6 C2CB

sin 6 CBB2

sin 6 B2BA
=

sin 6 A1AC

sin 6 BAA1

sin 6 B1BA

sin 6 CBB1

sin 6 C1CB

sin 6 ACC1

= 1

by Trig Ceva, since AA1, BB1, CC1 concur at G. Therefore AA2, BB2, CC2 concur as
well. (Their point of concurrence is called the isogonal conjugate of G; see section 5.5.)

10. Problem 2.1.6
Given triangleABC and pointsX, Y, Z such that 6 ABZ = 6 XBC, 6 BCX = 6 Y CA, 6 CAY =
6 ZAB, prove that AX,BY,CZ are concurrent.
Solution: Let α = 6 ABZ = 6 XBC, β = 6 BCX = 6 Y CA, γ = 6 CAY = 6 ZAB. Drop
perpendiculars XP , XQ from X to AB, AC respectively. Then

sin 6 BAX

sin 6 XAC
=
PX/XA

QX/XA
=
PX

QX
=
BX sin(B − β)

CX sin(C − γ)
=

sin γ sin(B − β)

sin β sin(C − γ)

by the Law of Sines. So

sin 6 BAX

sin 6 XAC

sin 6 ACZ

sin 6 ZCB

sin 6 CBY

sin 6 Y BA
=

sin γ sin(B − β)

sin β sin(C − γ)

sin β sin(A− α)

sinα sin(B − β)

sinα sin(C − γ)

sin γ sin(A− α)
= 1,

and AX, BY , CZ concur by Trig Ceva.

11. Problem 2.2.2
Let A,B,C be three points on a line. Pick a point D in the plane, and a point E on BD.
Then draw the line through AE ∩ CD and CE ∩ AD.
Show that this line meets the line AC in a point P that depends only on A,B,C.
Solution: Let F = CE ∩ AD, G = AE ∩ CD. Then AG, DB, CF concur (at E), so by
Ceva’s Theorem

AB

BC

CG

GD

DF

FA
= 1.

Applying Menelaos to the points P , G, F on the sides of triangle ACD gives

AP

PC

CG

GD

DF

FA
= −1.

Therefore AB/BC = −AP/PC, so AC/PC = 1 + AP/PC = 1 − AB/BC, and PC =
AC/(1− AB/BC); therefore P depends only on A, B, and C.
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12. Problem 2.2.3
Let A,B,C be three collinear points and D,E, F three other collinear points.
Let G = BE ∩ CF,H = AD ∩ CF, I = AD ∩ CE. If AI = HD and CH = GF ,
Prove that, BI = GE
Solution: Apply Menelaos to the triples (A,B,C) and (D,E, F ) on the sides of triangle
GHI, giving

HA

AI

IB

BG

GC

CH
= −1,

HD

DI

IE

EG

GF

FH
= −1.

Now AI = HD and CH = GF , so DI = AI − AD = HD − AD = HA and similarly
FH = GC; therefore

1 =
(
HA

AI

IB

BG

GC

CH

) (
HD

DI

IE

EG

GF

FH

)
=
IB

BG

IE

EG
.

So BG ·GE = BI · IE, or BG(BE − BG) = BI(BE − BI). Since I 6= G, we must have
BE −BG = BI, or BI = GE.

13. Problem 2.3.3
Let ABC be a triangle, ` a line and L,M,N the feet of the perpendiculars to ` from A,B,C
respectively. Prove that the perpendiculars to BC,CA,AB through L,M,N respectively,
are concurrent. Their intersection is called the orthopole of the line `and the triangle ABC.
Solution: lines AL, BM , CN , which are parallel and therefore “concur”. Therefore by the
observation at the end of this section, the lines through BC, CA, AB perpendicular to L,
M , N concur.

14. Problem 2.4.1 (USAMO 1997/2)
Let ABC be a triangle, and draw isosceles trianglesDBC,AEC,ABF external to ABC (with
BC,CA,AB as their respective bases). Prove that the lines through A,B,C perpendicular
to EF, FD,DE respectively, are concurrent.
Solution 1: By the observation at the end of this section it suffices to show that the lines
through D, E, F perpendicular to BC, CA, AB are concurrent. But these lines are exactly
the perpendicular bisectors of BC, CA, AB, which concur at the circumcenter of triangle
ABC.
Solution 2: Let P be the intersection of the line through A perpendicular to EF and the
line through B perpendicular to FD. Then PE2 − PF 2 = AE2 − AF 2 and PF 2 − PD2 =
BF 2 − BD2, so PE2 − PD2 = AE2 − AF 2 + BF 2 − BD2 = CE2 − CD2 and PC is
perpendicular to DE.

15. Problem 2.4.2 (MOP 1997)
Let ABC be a triangle, and D,E, F the points where the incircle touches sides BC,CA,AB
respectively. The parallel to AB through E meets DF at Q, and the parallel to AB through
D meets EF at T . Prove that the lines CF,DE,QT are concurrent.
Solution: We want to show

sin 6 TFC

sin 6 CFD

sin 6 FDE

sin 6 EDT

sin 6 DTQ

sin 6 QTF
= 1.
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Drop perpendiculars CX, CY from C to FE, FD respectively. Then

sin 6 TFC

sin 6 CFD
=
CX/CF

CY/CF
=
CX

CY
=
CE sin 6 XEC

CD sin 6 CDY
=

sin 6 AEF

sin 6 FDB
.

Since EQ ‖ DT , by the Law of Sines,

sin 6 FDE

sin 6 EDT
=

sin 6 QDE

sin 6 QED
=
QE

QD
and

sin 6 DTQ

sin 6 QTF
=

sin 6 TQE

sin 6 QTE
=
TE

QE
.

Now TE/QD = TF/FD = sin 6 TDF/ sin 6 DTF = sin 6 DFB/ sin 6 EFA, so

sin 6 TFC

sin 6 CFD

sin 6 FDE

sin 6 EDT

sin 6 DTQ

sin 6 QTF
=

sin 6 AEF

sin 6 FDB

QE

QD

TE

QE
=

sin 6 AEF

sin 6 FDB

sin 6 DFB

sin 6 EFA
= 1

and DE, QT , CF concur.

16. Problem 2.4.3 (Stanley Rabinowitz)
The incircle of triangle ABC touches sides BC,CA,AB at D,E, F , respectively. Let P be
any point inside triangle ABC, and letX, Y, Z be the points where the segments PA, PB, PC
respectively, meet the incircle.Prove that the lines DX,EY, FZ are concurrent.
Solution: We have

sin 6 FEY

sin 6 Y ED
=
FY

Y D
=
YM

Y N
=

sin 6 MBY

sin 6 Y BN
=

sin 6 ABP

sin 6 PBC
,

so

sin 6 FEY

sin 6 Y ED

sin 6 EDX

sin 6 XDY

sin 6 DFZ

sin 6 ZFE
=

sin 6 ABP

sin 6 PBC

sin 6 CAP

sin 6 PAB

sin 6 BCP

sin 6 PCA
= 1

and DX, EY , FZ concur.

17. Problem 3.1.2 (MOP 1997)
Consider a triangle ABC with AB = AC, and points M and N on AB and AC, respectively.
The lines BN and CM intersect at P . Prove that MN and BC are parallel if and only if
6 APM = 6 APN
Solution: First, suppose MN ‖ BC. Let ` be the bisector of angle BAC. Then as
ABC and AMN are isosceles triangles, reflection in ` interchanges B and C, M and N .
So P = BN ∩ CM maps to CM ∩ BN , which is P again; therefore P must lie on ` and
6 APM = 6 APN . Conversely, suppose 6 APM = 6 APN . Let M ′ be the reflection of M in
`. Then the reflection of C in ` is C ′ = AM ′ ∩CM . But AB′ = AB = AC, so we must have
B′ = C and M ′ = N ; therefore AM = AN and MN is parallel to BC.

18. Problem 3.1.4 (MOP 1996)
Let AB1C1, AB2C2, AB3C3 be directly congruent equilateral triangles. Prove that the pair-
wise intersections of the circumcircles of triangles AB1C2, AB2C3, AB3C1 form an equilateral
triangle congruent to the first three.
Solution: Let s be the common side length of all the triangles. Let ωi be the circumcir-
cle of ABi+1Ci−1, let Oi be the center of ωi, and let Di be the second intersection of ωi−1

and ωi+1. Let α = 6 B2AC3, β = 6 B3AC1, γ = 6 B1AC2. Note 6 AD3B3 = π − 6 AC1B3 =
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π− 6 AB3C1 = 6 AD1C1 = 6 AD1B3 + 6 B3D1C1 = π− 6 AD3B3 + 6 C1AB3 = π+β− 6 AD3B3,
so 6 AD3B3 = (π + β)/2. Similarly 6 AD1C1 = (π + β)/2, 6 AD3C3 = 6 AD2B2 = (π + α)/2,
6 AD2B2 = 6 AD1C1 = (π + γ)/2. Therefore 6 B2D2C2 = 2π − 6 B2D2A − 6 C2D2A =
2π−(π+α)/2−(π+β)/2 = (π+γ)/2 as α+β+γ = π. Consider a rotation around O1 through
6 AO1B2. This clearly maps A to B2, C3 to A, and ω1 to itself. Since distances are preserved,
B3 maps to C2. Let ω be the circumcircle of B2D2C2, and let P be the image of D3. Then
P lies on ω1 as D3 does, and P lies on ω since 6 B2PC2 = 6 AD3B3 = (π+β)/2 = 6 B2D2C2.
Since D3 6= A, P 6= B2, so we must have D3 = D2. Therefore 6 D3O1D2 = 6 AO1B2, so
D2D3 = B2A = s. Similarly, D1D2 = D3D1 = s, so triangle D1D2D3 is congruent to the
original three triangles.

19. Problem 3.2.2 (USAMO 1992/4)

Chords AA,BB,CC of a sphere meet at an interior point P but are not contained in a
plane. The sphere through A,B,C, P is tangent to the sphere through A′, B′, C ′, P . Prove
that AA = BB = CC
Solution: Let S be the sphere through A, B, C, and P , S ′ the sphere through A′, B′, C ′,
and P , and O and O′ the centers and r and r′ the radii of S and S ′ respectively. Since S
and S ′ are tangent and intersect at P , they are tangent at P , so O, O′, and P are collinear
with O′P/OP = −r′/r. Consider a homothety around P with ratio −r′/r. Then if X ′ is
the image of X, |O′X ′| = |OX|r′/r, so X lies on S if and only if X ′ lies on S ′; therefore this
homothety sends S to S ′. So the image of A, which is collinear with A and P , must also
lie on S ′, and must be A′. Similarly B′ is the image of B, so AP/PA′ = BP/PB′. Now
A, B, A′, B′, and P are coplanar, and A, B, A′, B′ lie on a sphere; therefore ABA′B′ is a
cyclic quadrilateral. So by the power-of-a-point theorem, AP ·PA′ = BP ·PB′. Multiplying
this by the equation above gives AP = BP , so AA′ = BB′. Similarly BB′ = CC ′, so
AA′ = BB′ = CC ′.

Alternatively, we could begin by taking the cross-section through the plane containing
A, B, A′, B′, and P . Then A, B, A′, B′ are concyclic, and the circle ω through A, B,
and P is tangent to the circle ω′ through A′, B′, and P , so if ` is their line of tangency,
6 ABP = 6 (AP, `) = 6 (A′P, `) = 6 PB′A′ = 6 BB′A′ = 6 BAA′ = 6 BAP and AP = BP .
Similarly A′P = B′P , so AA′ = BB′ = CC ′.

20. Problem 3.2.4
Given three nonintersecting circles, draw the intersection of the external tangents to each
pair of the circles. Show that these three points are collinear.
Solution:

Lemma: Suppose we have two noncongruent circles C1 and C2 whose external tangents
intersect at P . Then there is a unique homothety with positive ratio sending C1 to C2, and
its center is at P .

Proof. Any homothety with positive ratio sending C1 to C2 maps each of the external
tangents to itself, so it maps P to itself, that is, the center must be P . Then the ratio is
uniquely determined by the ratio of the radii of the two circles.

Now let C1, C2, C3 be our three circles, Pi the intersection of the external tangents of
Ci and Ci+1, and Hi the homothety with positive ratio mapping Ci to Ci+1. Let ` be the
line through P1 and P2. Since Hi is centered at Pi by the Lemma, ` is fixed setwise by H1

and H2. Note that H2H1 is a homothety with positive ratio mapping C1 to C3; therefore it

8



coincides with H−1
3 . But H2H1 leaves ` fixed, so H3 must as well; therefore the center of H3,

P3, must lie on `. So P1, P2, and P3 are collinear.

21. Problem 4.1.1 If A,B,C,D are concyclic and AB ∩ CD = E. Prove that,

AC

BC

AD

BD
=
AE

BE

Solution: As in the proof of Theorem 4.1, triangles EAD and ECB are similar, as are
triangles EAC and EDB; so AD/BC = AE/CE, AC/BD = CE/BE, and

AC

BC

AD

BD
=
AE

BE

22. Problem 4.1.2 (Mathematics Magazine, Dec. 1992)
Let ABC be an acute triangle, let H be the foot of the altitude from A, and let D,E,Q be
the feet of the perpendiculars from an arbitrary point P in the triangle onto AB,AC,AH,
respectively. Prove that,

|AB.AD − AC.AE| = BC.PQ

Solution: If P lies on AH, then quadrilaterals DPHB and EPHC are cyclic because of the
right angles at D, E, and H, so AB ·AD = AP ·AH = AC ·AE, and |AB ·AD−AC ·AE| =
0 = BC ·PQ. If not, let R = PD∩AH, S = PE∩AH; then DRHB and ESHC are cyclic,
so |AB ·AD−AC ·AE| = |AR·AH−AS ·AH| = RS ·AH; since 6 PRS = 6 DRA = 6 ABH =
6 ABC, triangles ABC and PRS are similar, so PQ/AH = RS/BC and RS ·AH = BC ·PQ.

23. Problem 4.1.3
Draw tangents OA and OB from a point O to a given circle. Through A is drawn a chord
AC parallel to OB; let E be the second intersection of OC with the circle.
Prove that, the line AE bisects the segment OB.
Solution: Let M be the intersection of AE with OB. Then 6 EOM = 6 COB = 6 OCA =
6 ECA = 6 OAE = 6 OAM , so MO is tangent to the circle through O, E, and A; therefore
MO2 = ME ·MA = MB2 and M is the midpoint of OB.

24. Problem 4.1.4 (MOP 1995)
Given triangle ABC, let D,E be any points on BC. A circle through A cuts the lines
AB,AC,AD,AE at the points P,Q,R, S, respectively. Prove that,

AP.AB − AR.AD
AS.AE − AQ.AC

=
BD

CE

Solution: We will use directed distances. Let O be the center of the given circle, r its radius,
and H and J the feet of the perpendiculars to BC from A and O respectively. Then by power-
of-a-point, BP ·BA = BO2−r2, so AP ·AB = AB2−PB ·AB = AB2−BO2 +r2. Similarly
AR ·AD = AD2−DO2+r2, so AP ·AB−AR ·AD = (AB2−BO2+r2)−(AD2−DO2+r2) =
AH2 +BH2 −BJ2 −OJ2 − AH2 −DH2 +DJ2 +OJ2
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= (BH−BJ)(BH+BJ)−(DH−DJ)(DH+DJ) = HJ ·(BH+BJ−DH−DJ) = 2HJ ·BD.
By a similar calculation AQ · AC − AS · AE = 2HJ · CE, so

AP · AB − AR · AD
AS · AE − AQ · AC

=
2HJ ·BD
2HJ · EC

=
BD

EC
.

25. Problem 4.1.5 (IMO 1995/1)
Let A,B,C,D be four distinct points on a line, in that order. The circles with diameters
AC and BD intersect at X and Y . The line XY meets BC at Z. Let P be a point on the
line XY other than Z. The line CP intersects the circle with diameter AC at C and M ,
and the line BP intersects the circle with diameter BD at B and N .
Prove that the lines AM,DN,XY are concurrent.
Solution: The result is trivial if P coincides with X or Y , so suppose not. By power-of-
a-point, PB · PN = PX · PY = PC · PM , so quadrilateral BCMN is cyclic. Then (using
directed angles) 6 MAD = 6 MAC = π/2 + 6 MCA = π/2 + 6 MCB = π/2 + 6 MNB =
6 MND, so quadrilateral ADMN is cyclic as well. Let Q = AM ∩ ND, and let Y1 and Y2

be the intersections of QX with the circles on AC and BD respectively. Then QX ·QY1 =
QA ·QM = QN ·QD = QX ·QY2, so Y1 = Y2 = Y and Q lies on the line XY .

Alternatively, one could begin by letting Q = AM ∩XY . Then QX ·QY = QA ·QM =
QP ·QZ since triangles QMP and QZA are similar. This implies that Q lies on the radical
axis of the circle on BD and the circumcircle of PZDN , namely the line ND. So AM , XY ,
DN concur at Q.

26. Problem 4.2.2 (MOP 1995)
Let BB′, CC ′ be altitudes of triangle ABC, and assume AB 6= AC. Let M be the midpoint
of BC, H the orthocenter of ABC, and D the intersection of BC and B′C ′.
Show that DH is perpendicular to AM .
Solution: Let AA′ be the altitude from A, let N be the midpoint of AM , let ω1 be the
circle through B, C, B′, and C ′, and let ω2 be the circle through A, A′, and M . Then
A, B, A′, B′ are concyclic, so HA · HA′ = HB · HB′; therefore H lies on the radical axis
of ω1 and ω2. Also A′, B′, C ′, and M lie on the nine-point circle of triangle ABC, so
DB ·DC = DB′ ·DC ′ = DA′ ·DM ; therefore D also lies on the radical axis of ω1 and ω2.
So DH is perpendicular to line NM , which is the same as line AM .

27. Problem 4.2.3 (IMO 1994 proposal)
A circle ω is tangent to two parallel lines `1 and `2. A second circle ω1 is tangent to `1 at A
and to ω externally at C. A third circle ω2 is tangent to `2 at B, to ω externally at D and to
ω1 externally at E. Let Q be the intersection of AD and BC. Prove that QC = QD = QE.
Solution: Let X and Y be the points where circle ω is tangent to lines `1 and `2 respectively.
It is easy to check that A, C, and Y are collinear, and similarly B, D, X and A, E, B
are collinear. Now 6 CY B = 6 AY B = 6 XAY = 6 XAC = 6 AEC, so BECY is cyclic.
Therefore AC ·AY = AE ·AB, so A lies on the radical axis of ω and ω2. In particular, since
D is their point of tangency, AD is tangent to ω and ω2. Similarly, BC is the radical axis
of ω and ω1 and is therefore tangent to these two circles. Therefore Q = AD ∩ BC is the
radical center of ω, ω1, and ω2, so QC, QD, QE are tangents and QC = QD = QE.
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28. Problem 4.2.4 (India, 1996)
Let ABC be a triangle. A line parallel to BC meets sides AB and AC at D and E,
respectively. Let P be a point inside triangle ADE, and let F and G be the intersection of
DE with BP and CP , respectively.
Show that A lies on the radical axis of the circumcircles of 4PDG and 4PFE.
Solution: Let M be the second intersection of the circumcircle of PDG with AB and N
the second intersection of the circumcircle of PFE with AC. Then 6 MBC = 6 MDG =
6 MPG = 6 MPC, so M , P , B, C are concyclic. Similarly, N , P , B, C are concyclic, so all
of these points lie on one circle; in particular 6 MDE = 6 MBC = 6 MNC = 6 MNE, so
quadrilateral MNDE is cyclic. Since A = AB ∩ AC = MD ∩ NE, A is the radical center
of MNDE, MPDG, and NPFE, so A lies on the radical axis of PDG and PFE.

29. Problem 4.2.5 (IMO 1985/5)
A circle with center O passes through the vertices A and C of triangle ABC, and intersects
the segments AB and BC again at distinct points K and N , respectively. The circumscribed
circles of the triangle ABC and KBN intersect at exactly two distinct points B and M .
Prove that, 6 OMB is a right angle.
Solution: By the radical axis theorem, AC, KN , and MB concur, at D, say. Then
6 DMK = 6 BMK = 6 BNK = 6 CNK = 6 CAK = 6 DAK, so D, M , A, K are concyclic.
Next, let E be the second intersection of the line AM with the circle centered at O; then
6 MEN = 6 AEN = 6 AKN = 6 AKD = 6 AMD = 6 AME, so lines MD and EN are
parallel; it therefore suffices to show OM ⊥ EN . But we also have 6 MNE = 6 BMN =
6 BKN = 6 AKN = 6 AEN = 6 MEN ; therefore ME = MN , and OE = ON .
So, OM and EN are perpendicular.

30. Problem 4.3.1
What do we get if we apply Brianchons theorem with three degenerate vertices?
Solution: The statement is: Let ACE be a triangle, and B, D, F the points where its
inscribed circle touches sides AC, CE, EA, respectively. Then lines AD, BE, CF are
concurrent.

31. Problem 4.3.2
Let ABCD be a circumscribed quadrilateral, whose incircle touches AB,BC,CD,DA at
M,N,P,Q, respectively. Prove that the lines AC,BD,MP,NQ are concurrent.
Solution: Let X = AC ∩ BD. Applying Brianchon’s theorem to the degenerate hexagon
AMBCPD, we see that lines AC, BD and MP concur, so line MP passes through point
X. Similarly, applying Brianchon’s theorem to ABNCDQ, lines AC, BD and NQ concur,
so line NQ also passes through X. Hence lines AC, BD, MP , NQ concur at X.

32. Problem 4.3.3
With the same notation (Problem 31), let lines BQ and BP intersect the inscribed circle
at E and F , respectively. Prove that ME,NF and BD are concurrent.
Solution: Let X = AC ∩ BD as in the previous solution and let Y = ME ∩ NF . By
Pascal’s theorem applied to hexagon MEQNFP , points ME ∩ NF = Y , EQ ∩ FP = B,
QN ∩ PM = X are collinear; since X lies on BD, so does Y .
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33. Problem 4.3.4
Let ABCDE be a convex quadrilateral with CD = DE and 6 BCD = 6 DEA = π/2. Let
F be the point on side AB such that AF/FB = AE/BC. Show that, 6 FCE = 6 FDE and
6 FEC = 6 BDC
Solution: Let P = AE ∩ BC; then CDEP is cyclic as 6 PED = π/2 = 6 PCD. Let γ be
the circumcircle of CDEP , and let Q and R be the second intersections of DA and DB,
respectively, with γ. Let G = CQ∩ER; then A, G, and B are collinear by Pascal’s theorem
applied to hexagon PCQDRE. By the Law of Sines,

AG

BG
=
QG

RG

sin 6 DQC

sinERD

sin 6 RBG

sin 6 GAQ
=

sin 6 QRG

sin 6 GQR

CD

DE

sin 6 DBA

sin 6 BAD
=

sin 6 ADE

sin 6 CDB

AD

BD
=
AE

BC
=
AF

BF
,

so in fact G = F . Thus 6 FCE = 6 QCE = 6 ADE and 6 FEC = 6 REC = 6 BDC.
Alternatively, define P , γ, and Q as before, and let G = AB ∩ CH. Then 6 AHG =

6 DHC = 6 EHD = 6 EHA and 6 BCG = 6 PCH = 6 PEH = 6 AEH
So by the Law of Sines

AG

BG
=
AG sin 6 AGH

BG sin 6 BGC
=
AH sin 6 AHG

BC sin 6 BCG
=
AH sin 6 EHA

BC sin 6 AEH
=
AE

BC
=
AF

BF
.

Hence G = F , so 6 FCE = 6 GCE = 6 HCE = 6 HDE = 6 ADE.

Similarly, 6 FEC = 6 BDC.

This is the solutions of the Older(1999) Version of Geometry Unbound
This Document is prepared by: Collected and edited by: Tarik Adnan Moon,

Bangladesh
March 07, 2008

*This document is prepared using LATEX
**The Diagrams are in a separate document

12


