Problems and Solutions of Geometry Unbound

Collected and edited by: Tarik Adnan Moon, Bangladesh

Contents

1. Problem 1.2.2 (USAMO 1994/3) 1
2. Problem 1.2.3 (IMO 1990/1) 1
3. Problem 1.3.2 2
4. Problem 1.3.3 2
5. Problem 1.4.1 (IMO 1994/2) 2
6. Problem 2.1.1 3
7. Problem 2.1.3 (Hungary-Israel, 1997) 3
8. Problem 2.1.4 (Răzvan Gelca) 3
9. Problem 2.1.5 (USAMO 1995/3) 4
10. Problem 2.1.6 4
11. Problem 2.2.2 4
12. Problem 2.2.3 5
13. Problem 2.3.3 5
14. Problem 2.4.1 (USAMO 1997/2) 5
15. Problem 2.4.2 (MOP 1997) 5
16. Problem 2.4.3 (Stanley Rabinowitz) 6
17. Problem 3.1.2 (MOP 1997) 6
18. Problem 3.1.4 (MOP 1996) 6
19. Problem 3.2.2 (USAMO 1992/4) 7
20. Problem 3.2.4 7
21. Problem 4.1.1 8
22. Problem 4.1.2 (Mathematics Magazine, Dec. 1992) 8
23. Problem 4.1.3 8
24. Problem 4.1.4 (MOP 1995) 8
25. Problem 4.1.5 (IMO 1995/1) 9
26. Problem 4.2.2 (MOP 1995) 9
27. Problem 4.2.3 (IMO 1994 proposal) 9
28. Problem 4.2.4 (India, 1996) 10
29. Problem 4.2.5 (IMO 1985/5) 10
30. Problem 4.3.1 10
31. Problem 4.3.2 10
32. Problem 4.3.3 10
33. Problem 4.3.4 11
34. Problem 1.2.2 (USAMO 1994/3)

A convex hexagon $A B C D E F$ is inscribed in a circle such that $A B=C D=E F$ and diagonals $A D, B E, C F$ are concurrent. Let P be the intersection of $A D$ and $C E$.
Prove that

$$
\frac{C P}{P E}=\left(\frac{A C}{C E}\right)^{2}
$$

Solution: Let $\theta=\angle A C B, \alpha=\angle B D C, \beta=\angle D F E, \gamma=\angle F B A$. Then $\angle E P A=\angle E D B=$ $\angle C P D=2 \theta+\gamma$ and $\angle P A E=\angle D B E=\angle D C P=\beta$, so $\triangle E P A \sim \triangle E D B \sim \triangle D P C$. Therefore

$$
\frac{C P / C D}{P E / A E}=\frac{A P / A E}{P E / A E}=\frac{A P}{P E}=\frac{B D}{D E} .
$$

Also $\angle E C A=\angle D O C=\angle E D O=\theta+\gamma$ and $\angle A E C=\angle C D O=\angle O E D=\theta+\alpha$, so $\triangle A C E \sim \triangle C O D \sim \triangle O D E$. (In fact, all six triangles given by O and two adjacent vertices of hexagon $A B C D E F$ are similar to $A C E$, by analogous angle-chasing.) Finally, $\triangle A C E \cong \triangle B D F$ as $A B C D, C D E F, E F A B$ are all isosceles trapezoids. Therefore

$$
\frac{C P}{P E}=\frac{C D}{A E} \frac{B D}{D E}=\frac{O D}{C E} \frac{A C}{D E}=\frac{A C}{C E} \frac{O D}{D E}=\left(\frac{A C}{C E}\right)^{2}
$$

2. Problem 1.2.3 (IMO 1990/1)

Chords $A B$ and $C D$ of a circle intersect at a point E inside the circle. Let M be an interior point of the segment $E B$. The tangent line of E to the circle through D, E, M intersects the lines $B C$ and $A C$ at F and G, respectively. If $A M / A B=t$, find $E G / E F$ in terms of t.
Solution: Let N be the second intersection of the circle through A, B, C, D with the circle through D, E, M. Note $\angle N E G=\angle N D E=\angle N D C=\angle N B C=180-\angle N A C=\angle N A G$; therefore N, G, A, and E are concyclic, so $\angle N G E=\angle N A E=\angle N A M$. We also have $\angle N M A=\angle N M E=\angle N E G$, so $\triangle N A M \sim \triangle N G E$; therefore

$$
\frac{E G}{A M}=\frac{N G}{N A}
$$

As $\angle N B F=\angle N B C=\angle N E G=\pi-\angle N E F, N, B, E, F$ are concyclic, so $\angle N F G=$ $\angle N F E=\angle N B E=\angle N B A ;$ as $\angle N G F=\angle N G E=\angle N A E=\angle N A B, \triangle N G F \sim \triangle N A B$, so

$$
\frac{G F}{A B}=\frac{N G}{N A} .
$$

These two equations give us $E G / G F=A M / A B=1 / t$; simple algebra gives

$$
\frac{E G}{E F}=\frac{t}{1-t}
$$

3. Problem 1.3.2

Two circles intersect at points A and B. An arbitrary line through B intersects the first circle again at C and the second circle again at D. The tangents to the first circle at C and the second at D intersect at M. Through the intersection of $A M$ and $C D$, there passes a line parallel to $C M$ and intersecting $A C$ at K. Prove that $B K$ is tangent to the second circle.
Solution: Note that $\angle D M C=\angle M D C+\angle D C M=\angle M D B+\angle B C M=\angle D A B+\angle B A C=$ $\angle D A C$, so points A, C, D, and M are concyclic. Let $P=A M \cap C D$; then $\angle K A B=\angle C A B=$ $\angle M C B=\angle M C P=\angle K P C=\angle K P B$, so points A, K, B, P are concyclic. Now

$$
\angle K B D=\angle K B P=\angle K A P=\angle C A M=\angle C D M=\angle B D M=\angle B A D
$$

therefore $B K$ is tangent to the second circle.
4. Problem 1.3.3

Let $C_{1}, C_{2}, C_{3}, C_{4}$ be four circles in the plane. Suppose that C_{1} and C_{2} intersect at P_{1} and Q_{1}, C_{2} and C_{3} intersect at P_{2} and Q_{2}, C_{3} and C_{4} intersect at P_{3} and Q_{3}, and C_{4} and C_{1} intersect at P_{4} and Q_{4}.
Show that if P_{1}, P_{2}, P_{3}, and P_{4} lie on a line or circle,then Q_{1}, Q_{2}, Q_{3}, and Q_{4} also lie on a line or circle.
Solution: Suppose $P_{1}, P_{2}, P_{3}, P_{4}$ lie on a line or circle; then $\angle P_{4} P_{1} P_{2}=\angle P_{4} P_{3} P_{2}$, so $\angle P_{4} P_{1} P_{2}+\angle P_{2} P_{3} P_{4}=0$. We have

$$
\begin{aligned}
& \angle Q_{1} Q_{2} Q_{3}=\angle Q_{1} Q_{2} P_{2}+\angle P_{2} Q_{2} Q_{3}=\angle Q_{1} P_{1} P_{2}+\angle P_{2} P_{3} Q_{3} \\
& \angle Q_{3} Q_{4} Q_{1}=\angle P_{4} Q_{4} Q_{1}+\angle Q_{3} Q_{4} P_{4}=\angle P_{4} P_{1} Q_{4}+\angle Q_{3} P_{3} P_{4}
\end{aligned}
$$

so $\angle Q_{1} Q_{2} Q_{3}+\angle Q_{3} Q_{4} Q_{1}=\angle P_{4} P_{1} P_{2}+\angle P_{2} P_{3} P_{4}=0$. Therefore $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ lie on a line or circle.
5. Problem 1.4.1 (IMO 1994/2) Let $A B C$ be an isosceles triangle with $A B=A C$. Suppose that

1. M is the midpoint of $B C$ and O is the point on the line $A M$ such that $O B$ is perpendicular to $A B$;
2. Q is an arbitrary point on the segment $B C$ different from B and C;
3. E lies on the line $A B$ and F lies on the line $A C$ such that E, Q, F are distinct and collinear.

Prove that $O Q$ is perpendicular to $E F$ if and only if $Q E=Q F$.
Solution: First, suppose $O Q \perp E F$. Then $\angle E B O=\angle E Q O=\angle F Q O=\angle F C O=\pi / 2$, so quadrilaterals $B Q O E$ and $F Q O C$ are cyclic. Therefore $\angle F E O=\angle Q E O=\angle Q B O=$ $\angle C B O=\angle B C O=\angle Q C O=\angle Q F O=\angle E F O$, so $O E=O F$; since $O Q \perp E F, Q E=Q F$.

Now suppose $Q E=Q F$, but $O Q$ is not perpendicular to $E F$. Construct $E^{\prime} F^{\prime}$ through Q perpendicular to $O Q$ with E^{\prime} on the ray $A B$ and F^{\prime} on the ray $A C$; then by the first part $Q E^{\prime}=Q F^{\prime}$. Since $Q E=Q F$ and $\angle E Q E^{\prime}=\angle F Q F^{\prime}, \triangle Q E E^{\prime} \cong \triangle Q F F^{\prime}$. But then $\angle E E^{\prime} F^{\prime}=\angle E E^{\prime} Q=\angle F F^{\prime} Q=\angle F F^{\prime} E^{\prime}$, so $E E^{\prime} \| F F^{\prime}$, impossible as then $A B \| A C$. So $O Q \perp E F$.

6. Problem 2.1.1

Suppose the cevians $A P, B Q, C R$ meet at T.
Prove that

$$
\frac{T P}{A P}+\frac{T Q}{B Q}+\frac{T R}{C R}=1
$$

Solution:

Let $K=[A B C]$. Then $T P / A P=[T B C] / K, T Q / B Q=[T C A] / K, T R / C R=[T A B] / K$, so

$$
\frac{T P}{A P}+\frac{T Q}{B Q}+\frac{T R}{C R}=\frac{[T B C]+[T C A]+[T A B]}{K}=\frac{[A B C]}{K}=1
$$

7. Problem 2.1.3 (Hungary-Israel, 1997)

The three squares $A C C_{1} A^{\prime \prime}, A B B_{1}^{\prime} A^{\prime}, B C D E$ are constructed externally on the sides of a triangle $A B C$. Let P be the center of $B C D E$. Prove that the lines $A^{\prime} C, A^{\prime \prime} B, P A$ are concurrent.
Solution: Let A_{1} be the foot of the perpendicular from $A^{\prime \prime}$ to $A B$, and C_{1} the foot of the perpendicular from $A^{\prime \prime}$ to $B C$; then

$$
\frac{\sin \angle A B A^{\prime \prime}}{\sin \angle A^{\prime \prime} B C}=\frac{A^{\prime \prime} A_{1} / B A^{\prime \prime}}{A^{\prime \prime} C_{1} / B A^{\prime \prime}}=\frac{A^{\prime \prime} A_{1}}{A^{\prime \prime} C_{1}}=\frac{b \cos A}{b \sqrt{2} \cos (C+\pi / 4)}=\frac{\cos A}{\cos C-\sin C} .
$$

(We take $A^{\prime \prime} A_{1}>0$ when $A^{\prime \prime}$ and C are on the same side of A_{1}, otherwise $A^{\prime \prime} A_{1}<0$; similarly for $A^{\prime \prime} C_{1}$.) Similarly

$$
\frac{\sin \angle B C A^{\prime}}{\sin \angle A^{\prime} C A}=\frac{c \sqrt{2} \cos (B+45)}{c \cos A}=\frac{\cos B-\sin B}{\cos A} .
$$

Finally, let C_{2} be the foot of the perpendicular from P to $A C$ and B_{2} the foot of the perpendicular from P to $A B$; then

$$
\frac{\sin \angle C A P}{\sin \angle P A B}=\frac{P C_{2} / A P}{P B_{2} / A P}=\frac{P C_{2}}{P B_{2}}=\frac{(a / \sqrt{2}) \cos (C+45)}{(a / \sqrt{2}) \cos (B+45)}=\frac{\cos C-\sin C}{\cos B-\sin B} .
$$

Therefore

$$
\frac{\sin \angle A B A^{\prime \prime}}{\sin \angle A^{\prime \prime} B C} \frac{\sin \angle B C A^{\prime}}{\sin \angle A^{\prime} C A} \frac{\sin \angle C A P}{\sin \angle P A B}=\frac{\cos A(\cos B-\sin B)(\cos C-\sin C)}{(\cos C-\sin C) \cos A(\cos B-\sin B)}=1,
$$

so $A P, B A^{\prime \prime}, C A^{\prime}$ concur by Trig Ceva.
8. Problem 2.1.4 (Răzvan Gelca) r

LetABCbeatriangleandD,E, FthepointswheretheincircletouchesthesidesBC,CA,AB, respectively.Let FD,DErespectively.ShowthatthelinesAM,BN,CPintersectifandonlyifthelinesDM,EN,FPintersect.
Solution: FromMdropperpendicularsMR,MQtoAB,ACrespectively.Then $\triangle F R M \sim \triangle E Q M$, as $\angle R F M=\angle A F E=\angle F D E=\angle F E A=\angle M E Q$; therefore

$$
\frac{\sin \angle B A M}{\sin \angle M A C}=\frac{R M / M A}{Q M / M A}=\frac{R M}{Q M}=\frac{F M}{E M} .
$$

Therefore

$$
\frac{\sin \angle B A M}{\sin \angle M A C} \frac{\sin \angle A C P}{\sin \angle P C B} \frac{\sin \angle C B N}{\sin \angle N B A}=\frac{F M}{M E} \frac{E P}{P D} \frac{D N}{N F},
$$

so $D M, E N, F P$ concur if and only if $A M, B N, C P$ do.
9. Problem 2.1.5 (USAMO 1995/3)

Given a nonisosceles, nonright triangle $A B C$ inscribed in a circle with center O, and let A_{1}, B_{1}, and C_{1} be the midpoints of sides $B C, C A$, and $A B$, respectively. Point A_{2} is located on the ray $O A_{1}$ so that $\triangle O A A_{1}$ is similar to $\triangle O A_{2} A$. Points B_{2} and C_{2} on rays $O B_{1}$ and $O C_{1}$, respectively, are defined similarly. Prove that lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent.
Solution: Let G be the centroid and H the orthocenter of $\triangle A B C$. Then $\angle O A A_{2}=$ $\angle O A_{1} A=\angle A_{1} A H$, and $\angle B A O=\pi / 2-C=\angle H A C$, so $\angle B A A_{2}=\angle A_{1} A C$. Similarly $\angle A A_{2} C=\angle B A A_{2}$, etc., so

$$
\frac{\sin \angle B A A_{2}}{\sin \angle A_{2} A C} \frac{\sin \angle A C C_{2}}{\sin \angle C_{2} C B} \frac{\sin \angle C B B_{2}}{\sin \angle B_{2} B A}=\frac{\sin \angle A_{1} A C}{\sin \angle B A A_{1}} \frac{\sin \angle B_{1} B A}{\sin \angle C B B_{1}} \frac{\sin \angle C_{1} C B}{\sin \angle A C C_{1}}=1
$$

by Trig Ceva, since $A A_{1}, B B_{1}, C C_{1}$ concur at G. Therefore $A A_{2}, B B_{2}, C C_{2}$ concur as well. (Their point of concurrence is called the isogonal conjugate of G; see section 5.5.)
10. Problem 2.1.6

Given triangle $A B C$ and points X, Y, Z such that $\angle A B Z=\angle X B C, \angle B C X=\angle Y C A, \angle C A Y=$ $\angle Z A B$, prove that $A X, B Y, C Z$ are concurrent.
Solution: Let $\alpha=\angle A B Z=\angle X B C, \beta=\angle B C X=\angle Y C A, \gamma=\angle C A Y=\angle Z A B$. Drop perpendiculars $X P, X Q$ from X to $A B, A C$ respectively. Then

$$
\frac{\sin \angle B A X}{\sin \angle X A C}=\frac{P X / X A}{Q X / X A}=\frac{P X}{Q X}=\frac{B X \sin (B-\beta)}{C X \sin (C-\gamma)}=\frac{\sin \gamma \sin (B-\beta)}{\sin \beta \sin (C-\gamma)}
$$

by the Law of Sines. So
$\frac{\sin \angle B A X}{\sin \angle X A C} \frac{\sin \angle A C Z}{\sin \angle Z C B} \frac{\sin \angle C B Y}{\sin \angle Y B A}=\frac{\sin \gamma \sin (B-\beta)}{\sin \beta \sin (C-\gamma)} \frac{\sin \beta \sin (A-\alpha)}{\sin \alpha \sin (B-\beta)} \frac{\sin \alpha \sin (C-\gamma)}{\sin \gamma \sin (A-\alpha)}=1$,
and $A X, B Y, C Z$ concur by Trig Ceva.

11. Problem 2.2.2

Let A, B, C be three points on a line. Pick a point D in the plane, and a point E on $B D$. Then draw the line through $A E \cap C D$ and $C E \cap A D$.
Show that this line meets the line $A C$ in a point P that depends only on A, B, C.
Solution: Let $F=C E \cap A D, G=A E \cap C D$. Then $A G, D B, C F$ concur (at E), so by Ceva's Theorem

$$
\frac{A B}{B C} \frac{C G}{G D} \frac{D F}{F A}=1
$$

Applying Menelaos to the points P, G, F on the sides of triangle $A C D$ gives

$$
\frac{A P}{P C} \frac{C G}{G D} \frac{D F}{F A}=-1 .
$$

Therefore $A B / B C=-A P / P C$, so $A C / P C=1+A P / P C=1-A B / B C$, and $P C=$ $A C /(1-A B / B C)$; therefore P depends only on A, B, and C.
12. Problem 2.2.3

Let A, B, C be three collinear points and D, E, F three other collinear points.
Let $G=B E \cap C F, H=A D \cap C F, I=A D \cap C E$. If $A I=H D$ and $C H=G F$,
Prove that, $B I=G E$
Solution: Apply Menelaos to the triples (A, B, C) and (D, E, F) on the sides of triangle GHI, giving

$$
\frac{H A}{A I} \frac{I B}{B G} \frac{G C}{C H}=-1, \quad \frac{H D}{D I} \frac{I E}{E G} \frac{G F}{F H}=-1 .
$$

Now $A I=H D$ and $C H=G F$, so $D I=A I-A D=H D-A D=H A$ and similarly $F H=G C$; therefore

$$
1=\left(\frac{H A}{A I} \frac{I B}{B G} \frac{G C}{C H}\right)\left(\frac{H D}{D I} \frac{I E}{E G} \frac{G F}{F H}\right)=\frac{I B}{B G} \frac{I E}{E G} .
$$

So $B G \cdot G E=B I \cdot I E$, or $B G(B E-B G)=B I(B E-B I)$. Since $I \neq G$, we must have $B E-B G=B I$, or $B I=G E$.
13. Problem 2.3.3

Let $A B C$ be a triangle, ℓ a line and L, M, N the feet of the perpendiculars to ℓ from A, B, C respectively. Prove that the perpendiculars to $B C, C A, A B$ through L, M, N respectively, are concurrent. Their intersection is called the orthopole of the line ℓ and the triangle $A B C$.
Solution: lines $A L, B M, C N$, which are parallel and therefore "concur". Therefore by the observation at the end of this section, the lines through $B C, C A, A B$ perpendicular to L, M, N concur.
14. Problem 2.4.1 (USAMO 1997/2)

Let $A B C$ be a triangle, and draw isosceles triangles $D B C, A E C, A B F$ external to $A B C$ (with $B C, C A, A B$ as their respective bases). Prove that the lines through A, B, C perpendicular to $E F, F D, D E$ respectively, are concurrent.
Solution 1: By the observation at the end of this section it suffices to show that the lines through D, E, F perpendicular to $B C, C A, A B$ are concurrent. But these lines are exactly the perpendicular bisectors of $B C, C A, A B$, which concur at the circumcenter of triangle $A B C$.
Solution 2: Let P be the intersection of the line through A perpendicular to $E F$ and the line through B perpendicular to $F D$. Then $P E^{2}-P F^{2}=A E^{2}-A F^{2}$ and $P F^{2}-P D^{2}=$ $B F^{2}-B D^{2}$, so $P E^{2}-P D^{2}=A E^{2}-A F^{2}+B F^{2}-B D^{2}=C E^{2}-C D^{2}$ and $P C$ is perpendicular to $D E$.
15. Problem 2.4.2 (MOP 1997)

Let $A B C$ be a triangle, and D, E, F the points where the incircle touches sides $B C, C A, A B$ respectively. The parallel to $A B$ through E meets $D F$ at Q, and the parallel to $A B$ through D meets $E F$ at T. Prove that the lines $C F, D E, Q T$ are concurrent.
Solution: We want to show

$$
\frac{\sin \angle T F C}{\sin \angle C F D} \frac{\sin \angle F D E}{\sin \angle E D T} \frac{\sin \angle D T Q}{\sin \angle Q T F}=1 .
$$

Drop perpendiculars $C X, C Y$ from C to $F E, F D$ respectively. Then

$$
\frac{\sin \angle T F C}{\sin \angle C F D}=\frac{C X / C F}{C Y / C F}=\frac{C X}{C Y}=\frac{C E \sin \angle X E C}{C D \sin \angle C D Y}=\frac{\sin \angle A E F}{\sin \angle F D B} .
$$

Since $E Q \| D T$, by the Law of Sines,

$$
\frac{\sin \angle F D E}{\sin \angle E D T}=\frac{\sin \angle Q D E}{\sin \angle Q E D}=\frac{Q E}{Q D} \quad \text { and } \quad \frac{\sin \angle D T Q}{\sin \angle Q T F}=\frac{\sin \angle T Q E}{\sin \angle Q T E}=\frac{T E}{Q E} .
$$

Now $T E / Q D=T F / F D=\sin \angle T D F / \sin \angle D T F=\sin \angle D F B / \sin \angle E F A$, so

$$
\frac{\sin \angle T F C}{\sin \angle C F D} \frac{\sin \angle F D E}{\sin \angle E D T} \frac{\sin \angle D T Q}{\sin \angle Q T F}=\frac{\sin \angle A E F}{\sin \angle F D B} \frac{Q E}{Q D} \frac{T E}{Q E}=\frac{\sin \angle A E F}{\sin \angle F D B} \frac{\sin \angle D F B}{\sin \angle E F A}=1
$$

and $D E, Q T, C F$ concur.
16. Problem 2.4.3 (Stanley Rabinowitz)

The incircle of triangle $A B C$ touches sides $B C, C A, A B$ at D, E, F, respectively. Let P be any point inside triangle $A B C$, and let X, Y, Z be the points where the segments $P A, P B, P C$ respectively, meet the incircle.Prove that the lines $D X, E Y, F Z$ are concurrent.
Solution: We have

$$
\frac{\sin \angle F E Y}{\sin \angle Y E D}=\frac{F Y}{Y D}=\frac{Y M}{Y N}=\frac{\sin \angle M B Y}{\sin \angle Y B N}=\frac{\sin \angle A B P}{\sin \angle P B C},
$$

so

$$
\frac{\sin \angle F E Y}{\sin \angle Y E D} \frac{\sin \angle E D X}{\sin \angle X D Y} \frac{\sin \angle D F Z}{\sin \angle Z F E}=\frac{\sin \angle A B P}{\sin \angle P B C} \frac{\sin \angle C A P}{\sin \angle P A B} \frac{\sin \angle B C P}{\sin \angle P C A}=1
$$

and $D X, E Y, F Z$ concur.
17. Problem 3.1.2 (MOP 1997)

Consider a triangle $A B C$ with $A B=A C$, and points M and N on $A B$ and $A C$, respectively. The lines $B N$ and $C M$ intersect at P. Prove that $M N$ and $B C$ are parallel if and only if $\angle A P M=\angle A P N$
Solution: First, suppose $M N \| B C$. Let ℓ be the bisector of angle $B A C$. Then as $A B C$ and $A M N$ are isosceles triangles, reflection in ℓ interchanges B and C, M and N. So $P=B N \cap C M$ maps to $C M \cap B N$, which is P again; therefore P must lie on ℓ and $\angle A P M=\angle A P N$. Conversely, suppose $\angle A P M=\angle A P N$. Let M^{\prime} be the reflection of M in ℓ. Then the reflection of C in ℓ is $C^{\prime}=A M^{\prime} \cap C M$. But $A B^{\prime}=A B=A C$, so we must have $B^{\prime}=C$ and $M^{\prime}=N$; therefore $A M=A N$ and $M N$ is parallel to $B C$.
18. Problem 3.1.4 (MOP 1996)

Let $A B_{1} C_{1}, A B_{2} C_{2}, A B_{3} C_{3}$ be directly congruent equilateral triangles. Prove that the pairwise intersections of the circumcircles of triangles $A B_{1} C_{2}, A B_{2} C_{3}, A B_{3} C_{1}$ form an equilateral triangle congruent to the first three.
Solution: Let s be the common side length of all the triangles. Let ω_{i} be the circumcircle of $A B_{i+1} C_{i-1}$, let O_{i} be the center of ω_{i}, and let D_{i} be the second intersection of ω_{i-1} and ω_{i+1}. Let $\alpha=\angle B_{2} A C_{3}, \beta=\angle B_{3} A C_{1}, \gamma=\angle B_{1} A C_{2}$. Note $\angle A D_{3} B_{3}=\pi-\angle A C_{1} B_{3}=$
$\pi-\angle A B_{3} C_{1}=\angle A D_{1} C_{1}=\angle A D_{1} B_{3}+\angle B_{3} D_{1} C_{1}=\pi-\angle A D_{3} B_{3}+\angle C_{1} A B_{3}=\pi+\beta-\angle A D_{3} B_{3}$, so $\angle A D_{3} B_{3}=(\pi+\beta) / 2$. Similarly $\angle A D_{1} C_{1}=(\pi+\beta) / 2, \angle A D_{3} C_{3}=\angle A D_{2} B_{2}=(\pi+\alpha) / 2$, $\angle A D_{2} B_{2}=\angle A D_{1} C_{1}=(\pi+\gamma) / 2$. Therefore $\angle B_{2} D_{2} C_{2}=2 \pi-\angle B_{2} D_{2} A-\angle C_{2} D_{2} A=$ $2 \pi-(\pi+\alpha) / 2-(\pi+\beta) / 2=(\pi+\gamma) / 2$ as $\alpha+\beta+\gamma=\pi$. Consider a rotation around O_{1} through $\angle A O_{1} B_{2}$. This clearly maps A to B_{2}, C_{3} to A, and ω_{1} to itself. Since distances are preserved, B_{3} maps to C_{2}. Let ω be the circumcircle of $B_{2} D_{2} C_{2}$, and let P be the image of D_{3}. Then P lies on ω_{1} as D_{3} does, and P lies on ω since $\angle B_{2} P C_{2}=\angle A D_{3} B_{3}=(\pi+\beta) / 2=\angle B_{2} D_{2} C_{2}$. Since $D_{3} \neq A, P \neq B_{2}$, so we must have $D_{3}=D_{2}$. Therefore $\angle D_{3} O_{1} D_{2}=\angle A O_{1} B_{2}$, so $D_{2} D_{3}=B_{2} A=s$. Similarly, $D_{1} D_{2}=D_{3} D_{1}=s$, so triangle $D_{1} D_{2} D_{3}$ is congruent to the original three triangles.
19. Problem 3.2.2 (USAMO 1992/4)

Chords $\overline{A A}, \overline{B B}, \overline{C C}$ of a sphere meet at an interior point P but are not contained in a plane. The sphere through A, B, C, P is tangent to the sphere through $A^{\prime}, B^{\prime}, C^{\prime}, P$. Prove that $\overline{A A}=\overline{B B}=\overline{C C}$
Solution: Let S be the sphere through A, B, C, and P, S^{\prime} the sphere through $A^{\prime}, B^{\prime}, C^{\prime}$, and P, and O and O^{\prime} the centers and r and r^{\prime} the radii of S and S^{\prime} respectively. Since S and S^{\prime} are tangent and intersect at P, they are tangent at P, so O, O^{\prime}, and P are collinear with $O^{\prime} P / O P=-r^{\prime} / r$. Consider a homothety around P with ratio $-r^{\prime} / r$. Then if X^{\prime} is the image of $X,\left|O^{\prime} X^{\prime}\right|=|O X| r^{\prime} / r$, so X lies on S if and only if X^{\prime} lies on S^{\prime}; therefore this homothety sends S to S^{\prime}. So the image of A, which is collinear with A and P, must also lie on S^{\prime}, and must be A^{\prime}. Similarly B^{\prime} is the image of B, so $A P / P A^{\prime}=B P / P B^{\prime}$. Now $A, B, A^{\prime}, B^{\prime}$, and P are coplanar, and $A, B, A^{\prime}, B^{\prime}$ lie on a sphere; therefore $A B A^{\prime} B^{\prime}$ is a cyclic quadrilateral. So by the power-of-a-point theorem, $A P \cdot P A^{\prime}=B P \cdot P B^{\prime}$. Multiplying this by the equation above gives $A P=B P$, so $A A^{\prime}=B B^{\prime}$. Similarly $B B^{\prime}=C C^{\prime}$, so $A A^{\prime}=B B^{\prime}=C C^{\prime}$.

Alternatively, we could begin by taking the cross-section through the plane containing $A, B, A^{\prime}, B^{\prime}$, and P. Then $A, B, A^{\prime}, B^{\prime}$ are concyclic, and the circle ω through A, B, and P is tangent to the circle ω^{\prime} through A^{\prime}, B^{\prime}, and P, so if ℓ is their line of tangency, $\angle A B P=\angle(A P, \ell)=\angle\left(A^{\prime} P, \ell\right)=\angle P B^{\prime} A^{\prime}=\angle B B^{\prime} A^{\prime}=\angle B A A^{\prime}=\angle B A P$ and $A P=B P$. Similarly $A^{\prime} P=B^{\prime} P$, so $A A^{\prime}=B B^{\prime}=C C^{\prime}$.

20. Problem 3.2.4

Given three nonintersecting circles, draw the intersection of the external tangents to each pair of the circles. Show that these three points are collinear.

Solution:

Lemma: Suppose we have two noncongruent circles C_{1} and C_{2} whose external tangents intersect at P. Then there is a unique homothety with positive ratio sending C_{1} to C_{2}, and its center is at P.

Proof. Any homothety with positive ratio sending C_{1} to C_{2} maps each of the external tangents to itself, so it maps P to itself, that is, the center must be P. Then the ratio is uniquely determined by the ratio of the radii of the two circles.

Now let C_{1}, C_{2}, C_{3} be our three circles, P_{i} the intersection of the external tangents of C_{i} and C_{i+1}, and H_{i} the homothety with positive ratio mapping C_{i} to C_{i+1}. Let ℓ be the line through P_{1} and P_{2}. Since H_{i} is centered at P_{i} by the Lemma, ℓ is fixed setwise by H_{1} and H_{2}. Note that $H_{2} H_{1}$ is a homothety with positive ratio mapping C_{1} to C_{3}; therefore it
coincides with H_{3}^{-1}. But $H_{2} H_{1}$ leaves ℓ fixed, so H_{3} must as well; therefore the center of H_{3}, P_{3}, must lie on ℓ. So P_{1}, P_{2}, and P_{3} are collinear.
21. Problem 4.1.1 If A, B, C, D are concyclic and $A B \cap C D=E$. Prove that,

$$
\frac{A C}{B C} \frac{A D}{B D}=\frac{A E}{B E}
$$

Solution: As in the proof of Theorem 4.1, triangles $E A D$ and $E C B$ are similar, as are triangles $E A C$ and $E D B$; so $A D / B C=A E / C E, A C / B D=C E / B E$, and

$$
\frac{A C}{B C} \frac{A D}{B D}=\frac{A E}{B E}
$$

22. Problem 4.1.2 (Mathematics Magazine, Dec. 1992)

Let $A B C$ be an acute triangle, let H be the foot of the altitude from A, and let D, E, Q be the feet of the perpendiculars from an arbitrary point P in the triangle onto $A B, A C, A H$, respectively. Prove that,

$$
|A B \cdot A D-A C \cdot A E|=B C \cdot P Q
$$

Solution: If P lies on $A H$, then quadrilaterals $D P H B$ and $E P H C$ are cyclic because of the right angles at D, E, and H, so $A B \cdot A D=A P \cdot A H=A C \cdot A E$, and $|A B \cdot A D-A C \cdot A E|=$ $0=B C \cdot P Q$. If not, let $R=P D \cap A H, S=P E \cap A H$; then $D R H B$ and $E S H C$ are cyclic, so $|A B \cdot A D-A C \cdot A E|=|A R \cdot A H-A S \cdot A H|=R S \cdot A H$; since $\angle P R S=\angle D R A=\angle A B H=$ $\angle A B C$, triangles $A B C$ and $P R S$ are similar, so $P Q / A H=R S / B C$ and $R S \cdot A H=B C \cdot P Q$.

23. Problem 4.1.3

Draw tangents $O A$ and $O B$ from a point O to a given circle. Through A is drawn a chord $A C$ parallel to $O B$; let E be the second intersection of $O C$ with the circle.
Prove that, the line $A E$ bisects the segment $O B$.
Solution: Let M be the intersection of $A E$ with $O B$. Then $\angle E O M=\angle C O B=\angle O C A=$ $\angle E C A=\angle O A E=\angle O A M$, so $M O$ is tangent to the circle through O, E, and A; therefore $M O^{2}=M E \cdot M A=M B^{2}$ and M is the midpoint of $O B$.
24. Problem 4.1.4 (MOP 1995)

Given triangle $A B C$, let D, E be any points on $B C$. A circle through A cuts the lines $A B, A C, A D, A E$ at the points P, Q, R, S, respectively. Prove that,

$$
\frac{A P \cdot A B-A R \cdot A D}{A S \cdot A E-A Q \cdot A C}=\frac{B D}{C E}
$$

Solution: We will use directed distances. Let O be the center of the given circle, r its radius, and H and J the feet of the perpendiculars to $B C$ from A and O respectively. Then by power-of-a-point, $B P \cdot B A=B O^{2}-r^{2}$, so $A P \cdot A B=A B^{2}-P B \cdot A B=A B^{2}-B O^{2}+r^{2}$. Similarly $A R \cdot A D=A D^{2}-D O^{2}+r^{2}$, so $A P \cdot A B-A R \cdot A D=\left(A B^{2}-B O^{2}+r^{2}\right)-\left(A D^{2}-D O^{2}+r^{2}\right)=$ $A H^{2}+B H^{2}-B J^{2}-O J^{2}-A H^{2}-D H^{2}+D J^{2}+O J^{2}$
$=(B H-B J)(B H+B J)-(D H-D J)(D H+D J)=H J \cdot(B H+B J-D H-D J)=2 H J \cdot B D$. By a similar calculation $A Q \cdot A C-A S \cdot A E=2 H J \cdot C E$, so

$$
\frac{A P \cdot A B-A R \cdot A D}{A S \cdot A E-A Q \cdot A C}=\frac{2 H J \cdot B D}{2 H J \cdot E C}=\frac{B D}{E C} .
$$

25. Problem 4.1.5 (IMO 1995/1)

Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N.
Prove that the lines $A M, D N, X Y$ are concurrent.
Solution: The result is trivial if P coincides with X or Y, so suppose not. By power-of-a-point, $P B \cdot P N=P X \cdot P Y=P C \cdot P M$, so quadrilateral $B C M N$ is cyclic. Then (using directed angles) $\angle M A D=\angle M A C=\pi / 2+\angle M C A=\pi / 2+\angle M C B=\pi / 2+\angle M N B=$ $\angle M N D$, so quadrilateral $A D M N$ is cyclic as well. Let $Q=A M \cap N D$, and let Y_{1} and Y_{2} be the intersections of $Q X$ with the circles on $A C$ and $B D$ respectively. Then $Q X \cdot Q Y_{1}=$ $Q A \cdot Q M=Q N \cdot Q D=Q X \cdot Q Y_{2}$, so $Y_{1}=Y_{2}=Y$ and Q lies on the line $X Y$.

Alternatively, one could begin by letting $Q=A M \cap X Y$. Then $Q X \cdot Q Y=Q A \cdot Q M=$ $Q P \cdot Q Z$ since triangles $Q M P$ and $Q Z A$ are similar. This implies that Q lies on the radical axis of the circle on $B D$ and the circumcircle of $P Z D N$, namely the line $N D$. So $A M, X Y$, $D N$ concur at Q.
26. Problem 4.2.2 (MOP 1995)

Let $B B^{\prime}, C C^{\prime}$ be altitudes of triangle $A B C$, and assume $A B \neq A C$. Let M be the midpoint of $B C, H$ the orthocenter of $A B C$, and D the intersection of $B C$ and $B^{\prime} C^{\prime}$.
Show that $D H$ is perpendicular to $A M$.
Solution: Let $A A^{\prime}$ be the altitude from A, let N be the midpoint of $A M$, let ω_{1} be the circle through B, C, B^{\prime}, and C^{\prime}, and let ω_{2} be the circle through A, A^{\prime}, and M. Then $A, B, A^{\prime}, B^{\prime}$ are concyclic, so $H A \cdot H A^{\prime}=H B \cdot H B^{\prime}$; therefore H lies on the radical axis of ω_{1} and ω_{2}. Also $A^{\prime}, B^{\prime}, C^{\prime}$, and M lie on the nine-point circle of triangle $A B C$, so $D B \cdot D C=D B^{\prime} \cdot D C^{\prime}=D A^{\prime} \cdot D M$; therefore D also lies on the radical axis of ω_{1} and ω_{2}. So $D H$ is perpendicular to line $N M$, which is the same as line $A M$.
27. Problem 4.2.3 (IMO 1994 proposal)

A circle ω is tangent to two parallel lines ℓ_{1} and ℓ_{2}. A second circle ω_{1} is tangent to ℓ_{1} at A and to ω externally at C. A third circle ω_{2} is tangent to ℓ_{2} at B, to ω externally at D and to ω_{1} externally at E. Let Q be the intersection of $A D$ and $B C$. Prove that $Q C=Q D=Q E$.
Solution: Let X and Y be the points where circle ω is tangent to lines ℓ_{1} and ℓ_{2} respectively. It is easy to check that A, C, and Y are collinear, and similarly B, D, X and A, E, B are collinear. Now $\angle C Y B=\angle A Y B=\angle X A Y=\angle X A C=\angle A E C$, so $B E C Y$ is cyclic. Therefore $A C \cdot A Y=A E \cdot A B$, so A lies on the radical axis of ω and ω_{2}. In particular, since D is their point of tangency, $A D$ is tangent to ω and ω_{2}. Similarly, $B C$ is the radical axis of ω and ω_{1} and is therefore tangent to these two circles. Therefore $Q=A D \cap B C$ is the radical center of ω, ω_{1}, and ω_{2}, so $Q C, Q D, Q E$ are tangents and $Q C=Q D=Q E$.
28. Problem 4.2.4 (India, 1996)

Let $A B C$ be a triangle. A line parallel to $B C$ meets sides $A B$ and $A C$ at D and E, respectively. Let P be a point inside triangle $A D E$, and let F and G be the intersection of $D E$ with $B P$ and $C P$, respectively.
Show that A lies on the radical axis of the circumcircles of $\triangle P D G$ and $\triangle P F E$.
Solution: Let M be the second intersection of the circumcircle of $P D G$ with $A B$ and N the second intersection of the circumcircle of $P F E$ with $A C$. Then $\angle M B C=\angle M D G=$ $\angle M P G=\angle M P C$, so M, P, B, C are concyclic. Similarly, N, P, B, C are concyclic, so all of these points lie on one circle; in particular $\angle M D E=\angle M B C=\angle M N C=\angle M N E$, so quadrilateral $M N D E$ is cyclic. Since $A=A B \cap A C=M D \cap N E, A$ is the radical center of $M N D E, M P D G$, and $N P F E$, so A lies on the radical axis of $P D G$ and $P F E$.
29. Problem 4.2.5 (IMO 1985/5)

A circle with center O passes through the vertices A and C of triangle $A B C$, and intersects the segments $A B$ and $B C$ again at distinct points K and N, respectively. The circumscribed circles of the triangle $A B C$ and $K B N$ intersect at exactly two distinct points B and M. Prove that, $\angle O M B$ is a right angle.
Solution: By the radical axis theorem, $A C, K N$, and $M B$ concur, at D, say. Then $\angle D M K=\angle B M K=\angle B N K=\angle C N K=\angle C A K=\angle D A K$, so D, M, A, K are concyclic. Next, let E be the second intersection of the line $A M$ with the circle centered at O; then $\angle M E N=\angle A E N=\angle A K N=\angle A K D=\angle A M D=\angle A M E$, so lines $M D$ and $E N$ are parallel; it therefore suffices to show $O M \perp E N$. But we also have $\angle M N E=\angle B M N=$ $\angle B K N=\angle A K N=\angle A E N=\angle M E N ;$ therefore $M E=M N$, and $O E=O N$.
So, $O M$ and $E N$ are perpendicular.

30. Problem 4.3.1

What do we get if we apply Brianchons theorem with three degenerate vertices?
Solution: The statement is: Let $A C E$ be a triangle, and B, D, F the points where its inscribed circle touches sides $A C, C E, E A$, respectively. Then lines $A D, B E, C F$ are concurrent.

31. Problem 4.3.2

Let $A B C D$ be a circumscribed quadrilateral, whose incircle touches $A B, B C, C D, D A$ at M, N, P, Q, respectively. Prove that the lines $A C, B D, M P, N Q$ are concurrent.
Solution: Let $X=A C \cap B D$. Applying Brianchon's theorem to the degenerate hexagon $A M B C P D$, we see that lines $A C, B D$ and $M P$ concur, so line $M P$ passes through point X. Similarly, applying Brianchon's theorem to $A B N C D Q$, lines $A C, B D$ and $N Q$ concur, so line $N Q$ also passes through X. Hence lines $A C, B D, M P, N Q$ concur at X.

32. Problem 4.3.3

With the same notation (Problem 31), let lines $B Q$ and $B P$ intersect the inscribed circle at E and F, respectively. Prove that $M E, N F$ and $B D$ are concurrent.
Solution: Let $X=A C \cap B D$ as in the previous solution and let $Y=M E \cap N F$. By Pascal's theorem applied to hexagon $M E Q N F P$, points $M E \cap N F=Y, E Q \cap F P=B$, $Q N \cap P M=X$ are collinear; since X lies on $B D$, so does Y.
33. Problem 4.3.4

Let $A B C D E$ be a convex quadrilateral with $C D=D E$ and $\angle B C D=\angle D E A=\pi / 2$. Let F be the point on side $A B$ such that $A F / F B=A E / B C$. Show that, $\angle F C E=\angle F D E$ and $\angle F E C=\angle B D C$
Solution: Let $P=A E \cap B C$; then $C D E P$ is cyclic as $\angle P E D=\pi / 2=\angle P C D$. Let γ be the circumcircle of $C D E P$, and let Q and R be the second intersections of $D A$ and $D B$, respectively, with γ. Let $G=C Q \cap E R$; then A, G, and B are collinear by Pascal's theorem applied to hexagon $P C Q D R E$. By the Law of Sines,
$\frac{A G}{B G}=\frac{Q G}{R G} \frac{\sin \angle D Q C}{\sin E R D} \frac{\sin \angle R B G}{\sin \angle G A Q}=\frac{\sin \angle Q R G}{\sin \angle G Q R} \frac{C D}{D E} \frac{\sin \angle D B A}{\sin \angle B A D}=\frac{\sin \angle A D E}{\sin \angle C D B} \frac{A D}{B D}=\frac{A E}{B C}=\frac{A F}{B F}$, so in fact $G=F$. Thus $\angle F C E=\angle Q C E=\angle A D E$ and $\angle F E C=\angle R E C=\angle B D C$.

Alternatively, define P, γ, and Q as before, and let $G=A B \cap C H$. Then $\angle A H G=$ $\angle D H C=\angle E H D=\angle E H A$ and $\angle B C G=\angle P C H=\angle P E H=\angle A E H$
So by the Law of Sines

$$
\frac{A G}{B G}=\frac{A G \sin \angle A G H}{B G \sin \angle B G C}=\frac{A H \sin \angle A H G}{B C \sin \angle B C G}=\frac{A H \sin \angle E H A}{B C \sin \angle A E H}=\frac{A E}{B C}=\frac{A F}{B F} .
$$

Hence $G=F$, so $\angle F C E=\angle G C E=\angle H C E=\angle H D E=\angle A D E$.
Similarly, $\angle F E C=\angle B D C$.

This is the solutions of the Older(1999) Version of Geometry Unbound This Document is prepared by: Collected and edited by: Tarik Adnan Moon,

[^0]
[^0]: *This document is prepared using $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$
 **The Diagrams are in a separate document

